非局部Hamilton-Jacobi-Bellman方程周期均匀化的收敛速率

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
Andrei Rodríguez-Paredes, Erwin Topp
{"title":"非局部Hamilton-Jacobi-Bellman方程周期均匀化的收敛速率","authors":"Andrei Rodríguez-Paredes, Erwin Topp","doi":"10.1051/cocv/2023038","DOIUrl":null,"url":null,"abstract":"In this paper we provide a rate of convergence for periodic homogenization of Hamilton–Jacobi–Bellman equations with nonlocal diffusion. The result is based on the regularity of the associated effective problem, where convexity plays a crucial role. The necessary regularity estimates are made possible by a representation formula we obtain for the effective Hamiltonian, a result that has an independent interest.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rates of convergence in periodic homogenization of nonlocal Hamilton–Jacobi–Bellman equations,\",\"authors\":\"Andrei Rodríguez-Paredes, Erwin Topp\",\"doi\":\"10.1051/cocv/2023038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide a rate of convergence for periodic homogenization of Hamilton–Jacobi–Bellman equations with nonlocal diffusion. The result is based on the regularity of the associated effective problem, where convexity plays a crucial role. The necessary regularity estimates are made possible by a representation formula we obtain for the effective Hamiltonian, a result that has an independent interest.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2023038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/cocv/2023038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了具有非局部扩散的Hamilton-Jacobi-Bellman方程周期均匀化的一个收敛速率。该结果基于相关有效问题的规律性,其中凸性起着至关重要的作用。我们得到的有效哈密顿量的一个表示公式使必要的正则性估计成为可能,这个结果具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rates of convergence in periodic homogenization of nonlocal Hamilton–Jacobi–Bellman equations,
In this paper we provide a rate of convergence for periodic homogenization of Hamilton–Jacobi–Bellman equations with nonlocal diffusion. The result is based on the regularity of the associated effective problem, where convexity plays a crucial role. The necessary regularity estimates are made possible by a representation formula we obtain for the effective Hamiltonian, a result that has an independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信