量子上同调中的仿射对称性:修正和新结果

IF 0.6 3区 数学 Q3 MATHEMATICS
Pierre-Emmanuel Chaput, Nicolas Perrin
{"title":"量子上同调中的仿射对称性:修正和新结果","authors":"Pierre-Emmanuel Chaput, Nicolas Perrin","doi":"10.4310/mrl.2023.v30.n2.a3","DOIUrl":null,"url":null,"abstract":"In a previous paper Affine symmetries of the equivariant quantum cohomology of rational homogeneous spaces, a general formula was given for the multiplication by some special Schubert classes in the quantum cohomology of any homogeneous space. Although this formula is correct in the non equivariant setting, the stated equivariant version was wrong. We provide corrections for the equivariant formula, thus giving a correct argument for the non equivariant formula. We also give new formulas in the equivariant homology of the affine grassmannian that could lead to Pieri type formulas.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine symmetries in quantum cohomology: corrections and new results\",\"authors\":\"Pierre-Emmanuel Chaput, Nicolas Perrin\",\"doi\":\"10.4310/mrl.2023.v30.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous paper Affine symmetries of the equivariant quantum cohomology of rational homogeneous spaces, a general formula was given for the multiplication by some special Schubert classes in the quantum cohomology of any homogeneous space. Although this formula is correct in the non equivariant setting, the stated equivariant version was wrong. We provide corrections for the equivariant formula, thus giving a correct argument for the non equivariant formula. We also give new formulas in the equivariant homology of the affine grassmannian that could lead to Pieri type formulas.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n2.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n2.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在前一篇有理齐次空间的等变量子上同调的仿射对称性中,给出了任意齐次空间的量子上同调中一些特殊的Schubert类的乘法的一般公式。虽然这个公式在非等变情况下是正确的,但所陈述的等变情况是错误的。我们对等变公式进行了修正,从而给出了非等变公式的正确论证。我们还给出了仿射格拉斯曼的等变同调的新公式,这些公式可以推导出Pieri型公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine symmetries in quantum cohomology: corrections and new results
In a previous paper Affine symmetries of the equivariant quantum cohomology of rational homogeneous spaces, a general formula was given for the multiplication by some special Schubert classes in the quantum cohomology of any homogeneous space. Although this formula is correct in the non equivariant setting, the stated equivariant version was wrong. We provide corrections for the equivariant formula, thus giving a correct argument for the non equivariant formula. We also give new formulas in the equivariant homology of the affine grassmannian that could lead to Pieri type formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信