后临界有限单临界多项式的有限性质

IF 0.6 3区 数学 Q3 MATHEMATICS
Robert L. Benedetto, Su-Ion Ih
{"title":"后临界有限单临界多项式的有限性质","authors":"Robert L. Benedetto, Su-Ion Ih","doi":"10.4310/mrl.2023.v30.n2.a1","DOIUrl":null,"url":null,"abstract":"Let $k$ be a number field with algebraic closure $\\bar{k}$, and let $S$ be a finite set of places of $k$ containing all the archimedean ones. Fix $d\\geq 2$ and $\\alpha \\in \\bar{k}$ such that the map $z\\mapsto z^d+\\alpha$ is not postcritically finite. Assuming a technical hypothesis on $\\alpha$, we prove that there are only finitely many parameters $c\\in\\bar{k}$ for which $z\\mapsto z^d+c$ is postcritically finite and for which $c$ is $S$-integral relative to $(\\alpha)$. That is, in the moduli space of unicritical polynomials of degree d, there are only finitely many PCF $\\bar{k}$-rational points that are $((\\alpha),S)$-integral. We conjecture that the same statement is true without the technical hypothesis.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"4 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A finiteness property of postcritically finite unicritical polynomials\",\"authors\":\"Robert L. Benedetto, Su-Ion Ih\",\"doi\":\"10.4310/mrl.2023.v30.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ be a number field with algebraic closure $\\\\bar{k}$, and let $S$ be a finite set of places of $k$ containing all the archimedean ones. Fix $d\\\\geq 2$ and $\\\\alpha \\\\in \\\\bar{k}$ such that the map $z\\\\mapsto z^d+\\\\alpha$ is not postcritically finite. Assuming a technical hypothesis on $\\\\alpha$, we prove that there are only finitely many parameters $c\\\\in\\\\bar{k}$ for which $z\\\\mapsto z^d+c$ is postcritically finite and for which $c$ is $S$-integral relative to $(\\\\alpha)$. That is, in the moduli space of unicritical polynomials of degree d, there are only finitely many PCF $\\\\bar{k}$-rational points that are $((\\\\alpha),S)$-integral. We conjecture that the same statement is true without the technical hypothesis.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$k$为一个代数闭包为$\bar{k}$的数域,设$S$为$k$中包含所有阿基米德数的有限位集。修复$d\geq 2$和$\alpha \in \bar{k}$,使映射$z\mapsto z^d+\alpha$不是后临界有限的。假设$\alpha$上的一个技术假设,我们证明只有有限多个参数$c\in\bar{k}$,其中$z\mapsto z^d+c$是后批判有限的,并且$c$相对于$(\alpha)$是$S$ -积分。即在d次单临界多项式的模空间中,只有有限多个PCF $\bar{k}$ -有理点$((\alpha),S)$ -积分。我们推测,没有技术假设,同样的陈述也是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finiteness property of postcritically finite unicritical polynomials
Let $k$ be a number field with algebraic closure $\bar{k}$, and let $S$ be a finite set of places of $k$ containing all the archimedean ones. Fix $d\geq 2$ and $\alpha \in \bar{k}$ such that the map $z\mapsto z^d+\alpha$ is not postcritically finite. Assuming a technical hypothesis on $\alpha$, we prove that there are only finitely many parameters $c\in\bar{k}$ for which $z\mapsto z^d+c$ is postcritically finite and for which $c$ is $S$-integral relative to $(\alpha)$. That is, in the moduli space of unicritical polynomials of degree d, there are only finitely many PCF $\bar{k}$-rational points that are $((\alpha),S)$-integral. We conjecture that the same statement is true without the technical hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信