两个自由随机变量的反对易子

IF 1.2 2区 数学 Q1 MATHEMATICS
Daniel Perales
{"title":"两个自由随机变量的反对易子","authors":"Daniel Perales","doi":"10.1512/iumj.2023.72.9505","DOIUrl":null,"url":null,"abstract":"Let $(\\kappa_n(a))_{n\\geq 1}$ denote the sequence of free cumulants of a random variable $a$ in a non-commutative probability space $(\\mathcal{A},\\varphi)$. Based on some considerations on bipartite graphs, we provide a formula to compute the cumulants $(\\kappa_n(ab+ba))_{n\\geq 1}$ in terms of $(\\kappa_n(a))_{n\\geq 1}$ and $(\\kappa_n(b))_{n\\geq 1}$, where $a$ and $b$ are freely independent. Our formula expresses the $n$-th free cumulant of $ab+ba$ as a sum indexed by partitions in the set $\\mathcal{Y}_{2n}$ of non-crossing partitions of the form ","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"18 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the anti-commutator of two free random variables\",\"authors\":\"Daniel Perales\",\"doi\":\"10.1512/iumj.2023.72.9505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\kappa_n(a))_{n\\\\geq 1}$ denote the sequence of free cumulants of a random variable $a$ in a non-commutative probability space $(\\\\mathcal{A},\\\\varphi)$. Based on some considerations on bipartite graphs, we provide a formula to compute the cumulants $(\\\\kappa_n(ab+ba))_{n\\\\geq 1}$ in terms of $(\\\\kappa_n(a))_{n\\\\geq 1}$ and $(\\\\kappa_n(b))_{n\\\\geq 1}$, where $a$ and $b$ are freely independent. Our formula expresses the $n$-th free cumulant of $ab+ba$ as a sum indexed by partitions in the set $\\\\mathcal{Y}_{2n}$ of non-crossing partitions of the form \",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9505\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9505","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$(\kappa_n(a))_{n\geq 1}$表示一个随机变量$a$在非交换概率空间$(\mathcal{A},\varphi)$中的自由累积量序列。基于对二部图的一些考虑,我们提供了一个公式来计算$(\kappa_n(a))_{n\geq 1}$和$(\kappa_n(b))_{n\geq 1}$的累积量$(\kappa_n(ab+ba))_{n\geq 1}$,其中$a$和$b$是自由独立的。我们的公式将$ab+ba$的$n$ -自由累积量表示为按以下形式的非交叉分区集合$\mathcal{Y}_{2n}$中的分区索引的和
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the anti-commutator of two free random variables
Let $(\kappa_n(a))_{n\geq 1}$ denote the sequence of free cumulants of a random variable $a$ in a non-commutative probability space $(\mathcal{A},\varphi)$. Based on some considerations on bipartite graphs, we provide a formula to compute the cumulants $(\kappa_n(ab+ba))_{n\geq 1}$ in terms of $(\kappa_n(a))_{n\geq 1}$ and $(\kappa_n(b))_{n\geq 1}$, where $a$ and $b$ are freely independent. Our formula expresses the $n$-th free cumulant of $ab+ba$ as a sum indexed by partitions in the set $\mathcal{Y}_{2n}$ of non-crossing partitions of the form
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信