{"title":"两个自由随机变量的反对易子","authors":"Daniel Perales","doi":"10.1512/iumj.2023.72.9505","DOIUrl":null,"url":null,"abstract":"Let $(\\kappa_n(a))_{n\\geq 1}$ denote the sequence of free cumulants of a random variable $a$ in a non-commutative probability space $(\\mathcal{A},\\varphi)$. Based on some considerations on bipartite graphs, we provide a formula to compute the cumulants $(\\kappa_n(ab+ba))_{n\\geq 1}$ in terms of $(\\kappa_n(a))_{n\\geq 1}$ and $(\\kappa_n(b))_{n\\geq 1}$, where $a$ and $b$ are freely independent. Our formula expresses the $n$-th free cumulant of $ab+ba$ as a sum indexed by partitions in the set $\\mathcal{Y}_{2n}$ of non-crossing partitions of the form ","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":"18 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the anti-commutator of two free random variables\",\"authors\":\"Daniel Perales\",\"doi\":\"10.1512/iumj.2023.72.9505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\kappa_n(a))_{n\\\\geq 1}$ denote the sequence of free cumulants of a random variable $a$ in a non-commutative probability space $(\\\\mathcal{A},\\\\varphi)$. Based on some considerations on bipartite graphs, we provide a formula to compute the cumulants $(\\\\kappa_n(ab+ba))_{n\\\\geq 1}$ in terms of $(\\\\kappa_n(a))_{n\\\\geq 1}$ and $(\\\\kappa_n(b))_{n\\\\geq 1}$, where $a$ and $b$ are freely independent. Our formula expresses the $n$-th free cumulant of $ab+ba$ as a sum indexed by partitions in the set $\\\\mathcal{Y}_{2n}$ of non-crossing partitions of the form \",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9505\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9505","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the anti-commutator of two free random variables
Let $(\kappa_n(a))_{n\geq 1}$ denote the sequence of free cumulants of a random variable $a$ in a non-commutative probability space $(\mathcal{A},\varphi)$. Based on some considerations on bipartite graphs, we provide a formula to compute the cumulants $(\kappa_n(ab+ba))_{n\geq 1}$ in terms of $(\kappa_n(a))_{n\geq 1}$ and $(\kappa_n(b))_{n\geq 1}$, where $a$ and $b$ are freely independent. Our formula expresses the $n$-th free cumulant of $ab+ba$ as a sum indexed by partitions in the set $\mathcal{Y}_{2n}$ of non-crossing partitions of the form