基于可拓理论的多目标自适应巡航系统模型预测控制

Zhutao Li, Xinxin Zhao, Jue Yang, Menglei Liu
{"title":"基于可拓理论的多目标自适应巡航系统模型预测控制","authors":"Zhutao Li, Xinxin Zhao, Jue Yang, Menglei Liu","doi":"10.20517/ces.2023.15","DOIUrl":null,"url":null,"abstract":"Under certain working conditions, the car-following performance and longitudinal ride comfort of adaptive cruise control (ACC) vehicles are contradictory. Therefore, the extension coordinated control is introduced into the weighted design of each performance index under the model predictive control (MPC) framework to optimize the overall vehicle driving performance. In this article, the dynamic model of the ACC vehicle and the variable time headway model are established, and then the predictive model and its corresponding cost function under the MPC framework are designed. By using the co-simulation platform of CarSim and Matlab/Simulink, three different simulation conditions are established and compared with the traditional ACC operating results. It was determined that the tracking speed error in the acceleration stage can be reduced by approximately 40% and the acceleration amplitude can be reduced by between 8%–17%. Therefore, there is an optimization effect under this control method. This study provides a foundation for curving ACC under an extension coordinated control theory.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model predictive control of multi-objective adaptive cruise system based on extension theory\",\"authors\":\"Zhutao Li, Xinxin Zhao, Jue Yang, Menglei Liu\",\"doi\":\"10.20517/ces.2023.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under certain working conditions, the car-following performance and longitudinal ride comfort of adaptive cruise control (ACC) vehicles are contradictory. Therefore, the extension coordinated control is introduced into the weighted design of each performance index under the model predictive control (MPC) framework to optimize the overall vehicle driving performance. In this article, the dynamic model of the ACC vehicle and the variable time headway model are established, and then the predictive model and its corresponding cost function under the MPC framework are designed. By using the co-simulation platform of CarSim and Matlab/Simulink, three different simulation conditions are established and compared with the traditional ACC operating results. It was determined that the tracking speed error in the acceleration stage can be reduced by approximately 40% and the acceleration amplitude can be reduced by between 8%–17%. Therefore, there is an optimization effect under this control method. This study provides a foundation for curving ACC under an extension coordinated control theory.\",\"PeriodicalId\":72652,\"journal\":{\"name\":\"Complex engineering systems (Alhambra, Calif.)\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex engineering systems (Alhambra, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ces.2023.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2023.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一定工况下,自适应巡航控制车辆的跟车性能与纵向平顺性是矛盾的。为此,在模型预测控制(MPC)框架下,将扩展协调控制引入到各性能指标的加权设计中,以优化整车的整体行驶性能。本文首先建立了ACC车辆的动态模型和变车头时距模型,然后设计了MPC框架下的预测模型及其相应的代价函数。利用CarSim和Matlab/Simulink的联合仿真平台,建立了三种不同的仿真条件,并与传统的ACC运行结果进行了对比。结果表明,该方法可使加速度阶段的跟踪速度误差减小约40%,加速度幅值减小8% ~ 17%。因此,在这种控制方法下存在优化效果。本文的研究为可拓协调控制理论下的曲线协调控制提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model predictive control of multi-objective adaptive cruise system based on extension theory
Under certain working conditions, the car-following performance and longitudinal ride comfort of adaptive cruise control (ACC) vehicles are contradictory. Therefore, the extension coordinated control is introduced into the weighted design of each performance index under the model predictive control (MPC) framework to optimize the overall vehicle driving performance. In this article, the dynamic model of the ACC vehicle and the variable time headway model are established, and then the predictive model and its corresponding cost function under the MPC framework are designed. By using the co-simulation platform of CarSim and Matlab/Simulink, three different simulation conditions are established and compared with the traditional ACC operating results. It was determined that the tracking speed error in the acceleration stage can be reduced by approximately 40% and the acceleration amplitude can be reduced by between 8%–17%. Therefore, there is an optimization effect under this control method. This study provides a foundation for curving ACC under an extension coordinated control theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信