基于增强松鼠搜索优化算法和卷积神经网络的食物识别

Q4 Mathematics
Megha Chopra, Archana Purwar
{"title":"基于增强松鼠搜索优化算法和卷积神经网络的食物识别","authors":"Megha Chopra, Archana Purwar","doi":"10.1504/ijdats.2023.133023","DOIUrl":null,"url":null,"abstract":"Owning to the sedentary lifestyle, dietary assessment has become a significant research area. Automated food assessment initiates with food classification. Image classification commences with segmentation. Apparently, thresholding is the elemental method to perform segmentation. Although, there are many ways to optimise the solution of multi-level thresholding, this paper proposes a squirrel search algorithm (SSA)-based optimised solution for multi-level thresholding. It applies convolutional neural network (CNN) to recognise food images. Further, the paper has proposed a new enhanced squirrel search algorithm (ESSA) to improve the food recognition accuracy. The results show that ESSA improves the performance of image segmentation and classification. The performance of the proposed algorithm is evaluated using food datasets UEC-256 and UEC-100 and accuracy of 83.1% and 82.1% was obtained respectively. Proposed algorithm is also compared with existing work taken under this study and it has been observed that it outperformed them.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Food recognition using enhanced squirrel search optimisation algorithm and convolutional neural network\",\"authors\":\"Megha Chopra, Archana Purwar\",\"doi\":\"10.1504/ijdats.2023.133023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owning to the sedentary lifestyle, dietary assessment has become a significant research area. Automated food assessment initiates with food classification. Image classification commences with segmentation. Apparently, thresholding is the elemental method to perform segmentation. Although, there are many ways to optimise the solution of multi-level thresholding, this paper proposes a squirrel search algorithm (SSA)-based optimised solution for multi-level thresholding. It applies convolutional neural network (CNN) to recognise food images. Further, the paper has proposed a new enhanced squirrel search algorithm (ESSA) to improve the food recognition accuracy. The results show that ESSA improves the performance of image segmentation and classification. The performance of the proposed algorithm is evaluated using food datasets UEC-256 and UEC-100 and accuracy of 83.1% and 82.1% was obtained respectively. Proposed algorithm is also compared with existing work taken under this study and it has been observed that it outperformed them.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdats.2023.133023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdats.2023.133023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

由于久坐不动的生活方式,饮食评估已成为一个重要的研究领域。自动食品评估开始与食品分类。图像分类从分割开始。显然,阈值分割是执行分割的基本方法。虽然有许多方法可以优化多级阈值的解,但本文提出了一种基于松鼠搜索算法(SSA)的多级阈值优化解。它应用卷积神经网络(CNN)来识别食物图像。在此基础上,提出了一种新的增强松鼠搜索算法(ESSA)来提高食物识别的准确率。结果表明,该方法提高了图像分割和分类的性能。使用食品数据集UEC-256和UEC-100对该算法进行了性能评估,准确率分别为83.1%和82.1%。该算法还与本研究下的现有工作进行了比较,并观察到它优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Food recognition using enhanced squirrel search optimisation algorithm and convolutional neural network
Owning to the sedentary lifestyle, dietary assessment has become a significant research area. Automated food assessment initiates with food classification. Image classification commences with segmentation. Apparently, thresholding is the elemental method to perform segmentation. Although, there are many ways to optimise the solution of multi-level thresholding, this paper proposes a squirrel search algorithm (SSA)-based optimised solution for multi-level thresholding. It applies convolutional neural network (CNN) to recognise food images. Further, the paper has proposed a new enhanced squirrel search algorithm (ESSA) to improve the food recognition accuracy. The results show that ESSA improves the performance of image segmentation and classification. The performance of the proposed algorithm is evaluated using food datasets UEC-256 and UEC-100 and accuracy of 83.1% and 82.1% was obtained respectively. Proposed algorithm is also compared with existing work taken under this study and it has been observed that it outperformed them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信