Amy S. Hendricks, Uma S. Bhatt, Gerald V. Frost, Donald A. Walker, Peter A. Bieniek, Martha K. Raynolds, Rick T. Lader, Howard E. Epstein, Jorge E. Pinzon, Compton J. Tucker, Josefino C. Comiso
{"title":"育空-库斯库温三角洲春季海冰浓度的年代际变化与夏季温度和NDVI有关","authors":"Amy S. Hendricks, Uma S. Bhatt, Gerald V. Frost, Donald A. Walker, Peter A. Bieniek, Martha K. Raynolds, Rick T. Lader, Howard E. Epstein, Jorge E. Pinzon, Compton J. Tucker, Josefino C. Comiso","doi":"10.1175/ei-d-23-0002.1","DOIUrl":null,"url":null,"abstract":"Abstract Rapidly warming temperatures in the Arctic are driving increasing tundra vegetation productivity, evidenced in both the satellite derived Normalized Difference Vegetation Index (NDVI) imagery and field studies. These trends, however, are not uniformly positive across the circumpolar Arctic. One notable region of negative linear NDVI trends that have persisted over the last 15 years is southwest Alaska’s Yukon-Kuskokwim Delta (YKD). Negative NDVI trends in the YKD region appear inconsistent with our understanding since tundra vegetation is temperature-limited and air temperatures have increased on the YKD. Analysis over a 40-year record from 1982-2021 reveals distinct decadal variability in the NDVI time series, which continues to produce negative linear trends. Similar decadal variability is also evident in summer warmth and 100-km coastal zone spring sea-ice concentrations. This suggests that decadal climate variations can dominate the trends of NDVI through their influence on the drivers of tundra vegetation, namely coastal sea-ice concentrations and summer warmth. The relationships among sea-ice, summer warmth, and NDVI have changed over the 40-year record. Seasonality analysis since 1982 shows declining sea-ice concentration in spring is followed by trends of increasing temperatures, but weakly declining NDVI during the growing season. An additional key finding is that since early 2010s, the relationships between sea-ice concentration and summer warmth, and sea-ice concentration and NDVI have strengthened, while the relationship between NDVI and summer warmth has weakened, indicating that temperature may no longer be the primary limiting factor for Arctic tundra vegetation on the YKD.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decadal variability in spring sea-ice concentration linked to summer temperature and NDVI on the Yukon-Kuskokwim Delta\",\"authors\":\"Amy S. Hendricks, Uma S. Bhatt, Gerald V. Frost, Donald A. Walker, Peter A. Bieniek, Martha K. Raynolds, Rick T. Lader, Howard E. Epstein, Jorge E. Pinzon, Compton J. Tucker, Josefino C. Comiso\",\"doi\":\"10.1175/ei-d-23-0002.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rapidly warming temperatures in the Arctic are driving increasing tundra vegetation productivity, evidenced in both the satellite derived Normalized Difference Vegetation Index (NDVI) imagery and field studies. These trends, however, are not uniformly positive across the circumpolar Arctic. One notable region of negative linear NDVI trends that have persisted over the last 15 years is southwest Alaska’s Yukon-Kuskokwim Delta (YKD). Negative NDVI trends in the YKD region appear inconsistent with our understanding since tundra vegetation is temperature-limited and air temperatures have increased on the YKD. Analysis over a 40-year record from 1982-2021 reveals distinct decadal variability in the NDVI time series, which continues to produce negative linear trends. Similar decadal variability is also evident in summer warmth and 100-km coastal zone spring sea-ice concentrations. This suggests that decadal climate variations can dominate the trends of NDVI through their influence on the drivers of tundra vegetation, namely coastal sea-ice concentrations and summer warmth. The relationships among sea-ice, summer warmth, and NDVI have changed over the 40-year record. Seasonality analysis since 1982 shows declining sea-ice concentration in spring is followed by trends of increasing temperatures, but weakly declining NDVI during the growing season. An additional key finding is that since early 2010s, the relationships between sea-ice concentration and summer warmth, and sea-ice concentration and NDVI have strengthened, while the relationship between NDVI and summer warmth has weakened, indicating that temperature may no longer be the primary limiting factor for Arctic tundra vegetation on the YKD.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/ei-d-23-0002.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/ei-d-23-0002.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Decadal variability in spring sea-ice concentration linked to summer temperature and NDVI on the Yukon-Kuskokwim Delta
Abstract Rapidly warming temperatures in the Arctic are driving increasing tundra vegetation productivity, evidenced in both the satellite derived Normalized Difference Vegetation Index (NDVI) imagery and field studies. These trends, however, are not uniformly positive across the circumpolar Arctic. One notable region of negative linear NDVI trends that have persisted over the last 15 years is southwest Alaska’s Yukon-Kuskokwim Delta (YKD). Negative NDVI trends in the YKD region appear inconsistent with our understanding since tundra vegetation is temperature-limited and air temperatures have increased on the YKD. Analysis over a 40-year record from 1982-2021 reveals distinct decadal variability in the NDVI time series, which continues to produce negative linear trends. Similar decadal variability is also evident in summer warmth and 100-km coastal zone spring sea-ice concentrations. This suggests that decadal climate variations can dominate the trends of NDVI through their influence on the drivers of tundra vegetation, namely coastal sea-ice concentrations and summer warmth. The relationships among sea-ice, summer warmth, and NDVI have changed over the 40-year record. Seasonality analysis since 1982 shows declining sea-ice concentration in spring is followed by trends of increasing temperatures, but weakly declining NDVI during the growing season. An additional key finding is that since early 2010s, the relationships between sea-ice concentration and summer warmth, and sea-ice concentration and NDVI have strengthened, while the relationship between NDVI and summer warmth has weakened, indicating that temperature may no longer be the primary limiting factor for Arctic tundra vegetation on the YKD.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.