Mohammad Soleimani Amiri, Rizauddin Ramli, Aiman Hakimi Faizal
{"title":"无人机同步定位、地图绘制与标签导航","authors":"Mohammad Soleimani Amiri, Rizauddin Ramli, Aiman Hakimi Faizal","doi":"10.30880/ijie.2023.15.05.024","DOIUrl":null,"url":null,"abstract":"This paper presents navigation techniques for an Unmanned Aerial Vehicle (UAV) in a virtual simulation of an indoor environment using Simultaneous Localization and Mapping (SLAM) and April Tag markers to reach a target destination. In many cases, UAVs can access locations that are inaccessible to people or regular vehicles in indoor environments, making them valuable for surveillance purposes. This study employs the Robot Operating System (ROS) to simulate SLAM techniques using LIDAR and GMapping packages for UAV navigation in two different environments. In the Tag-based simulation, the input topic for April Tag in ROS is camera images, and the calibration of position with a tag is done through assigning a message to each ID and its marker image. On the other hand, navigation in SLAM was achieved using a global and local planner algorithm. For localization, an Adaptive Monte-Carlo Localization (AMCL) technique has been used to identify factors contributing to inconsistent mapping results, such as heavy computational load, grid mapping accuracy, and inadequate UAV localization. Furthermore, this study analyzed the April Tag-based navigation algorithm, which showed satisfactory outcomes due to its lighter computing requirements. It can be ascertained that by using ROS packages, the simulation of SLAM and Tag-based UAV navigation inside a building can be achieved.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"69 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Localization and Mapping and Tag-Based Navigation for Unmanned Aerial Vehicles\",\"authors\":\"Mohammad Soleimani Amiri, Rizauddin Ramli, Aiman Hakimi Faizal\",\"doi\":\"10.30880/ijie.2023.15.05.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents navigation techniques for an Unmanned Aerial Vehicle (UAV) in a virtual simulation of an indoor environment using Simultaneous Localization and Mapping (SLAM) and April Tag markers to reach a target destination. In many cases, UAVs can access locations that are inaccessible to people or regular vehicles in indoor environments, making them valuable for surveillance purposes. This study employs the Robot Operating System (ROS) to simulate SLAM techniques using LIDAR and GMapping packages for UAV navigation in two different environments. In the Tag-based simulation, the input topic for April Tag in ROS is camera images, and the calibration of position with a tag is done through assigning a message to each ID and its marker image. On the other hand, navigation in SLAM was achieved using a global and local planner algorithm. For localization, an Adaptive Monte-Carlo Localization (AMCL) technique has been used to identify factors contributing to inconsistent mapping results, such as heavy computational load, grid mapping accuracy, and inadequate UAV localization. Furthermore, this study analyzed the April Tag-based navigation algorithm, which showed satisfactory outcomes due to its lighter computing requirements. It can be ascertained that by using ROS packages, the simulation of SLAM and Tag-based UAV navigation inside a building can be achieved.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.05.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.05.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Simultaneous Localization and Mapping and Tag-Based Navigation for Unmanned Aerial Vehicles
This paper presents navigation techniques for an Unmanned Aerial Vehicle (UAV) in a virtual simulation of an indoor environment using Simultaneous Localization and Mapping (SLAM) and April Tag markers to reach a target destination. In many cases, UAVs can access locations that are inaccessible to people or regular vehicles in indoor environments, making them valuable for surveillance purposes. This study employs the Robot Operating System (ROS) to simulate SLAM techniques using LIDAR and GMapping packages for UAV navigation in two different environments. In the Tag-based simulation, the input topic for April Tag in ROS is camera images, and the calibration of position with a tag is done through assigning a message to each ID and its marker image. On the other hand, navigation in SLAM was achieved using a global and local planner algorithm. For localization, an Adaptive Monte-Carlo Localization (AMCL) technique has been used to identify factors contributing to inconsistent mapping results, such as heavy computational load, grid mapping accuracy, and inadequate UAV localization. Furthermore, this study analyzed the April Tag-based navigation algorithm, which showed satisfactory outcomes due to its lighter computing requirements. It can be ascertained that by using ROS packages, the simulation of SLAM and Tag-based UAV navigation inside a building can be achieved.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.