Goh K. Y., Soong M. F., Ramli R., Saifizul A.A., Khoo S.Y.
{"title":"汽车悬架系统非线性变量惯性器的设计与表征","authors":"Goh K. Y., Soong M. F., Ramli R., Saifizul A.A., Khoo S.Y.","doi":"10.30880/ijie.2023.15.05.021","DOIUrl":null,"url":null,"abstract":"Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System\",\"authors\":\"Goh K. Y., Soong M. F., Ramli R., Saifizul A.A., Khoo S.Y.\",\"doi\":\"10.30880/ijie.2023.15.05.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.05.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.05.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System
Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.