复函数的Hilbert空间分解性质及其应用

IF 0.6 Q3 MATHEMATICS
Myroslava I. Vovk, Petro Ya. Pukach, Volodymyr M. Dilnyi, Anatolij K. Prykarpatski
{"title":"复函数的Hilbert空间分解性质及其应用","authors":"Myroslava I. Vovk, Petro Ya. Pukach, Volodymyr M. Dilnyi, Anatolij K. Prykarpatski","doi":"10.37256/cm.4420232386","DOIUrl":null,"url":null,"abstract":"We analyzed the classical problem of decomposing the Hilbert space of holomorphic functions, especially their splitting into the product or sum of domain-separated components. For the Bergman space of analytical functions, we obtained a special decomposition satisfying the assigned growth degree properties. Concerning a general Hilbert space of analytical functions on a connected domain, we studied its α-invariant decomposition and related ergodic consequences. As an interesting consequence, we obtained the decomposition theorem for an ergodic α-mapping on the Bergman space of holomorphic functions.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"48 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert Space Decomposition Properties of Complex Functions and Their Applications\",\"authors\":\"Myroslava I. Vovk, Petro Ya. Pukach, Volodymyr M. Dilnyi, Anatolij K. Prykarpatski\",\"doi\":\"10.37256/cm.4420232386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyzed the classical problem of decomposing the Hilbert space of holomorphic functions, especially their splitting into the product or sum of domain-separated components. For the Bergman space of analytical functions, we obtained a special decomposition satisfying the assigned growth degree properties. Concerning a general Hilbert space of analytical functions on a connected domain, we studied its α-invariant decomposition and related ergodic consequences. As an interesting consequence, we obtained the decomposition theorem for an ergodic α-mapping on the Bergman space of holomorphic functions.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

分析了全纯函数Hilbert空间分解的经典问题,特别是全纯函数Hilbert空间分解为域分离分量的积或和的问题。对于解析函数的Bergman空间,我们得到了一个满足给定生长度性质的特殊分解。关于连通域上解析函数的一般Hilbert空间,研究了其α-不变分解及其遍历结果。作为一个有趣的结果,我们得到了全纯函数在Bergman空间上的遍历α-映射的分解定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilbert Space Decomposition Properties of Complex Functions and Their Applications
We analyzed the classical problem of decomposing the Hilbert space of holomorphic functions, especially their splitting into the product or sum of domain-separated components. For the Bergman space of analytical functions, we obtained a special decomposition satisfying the assigned growth degree properties. Concerning a general Hilbert space of analytical functions on a connected domain, we studied its α-invariant decomposition and related ergodic consequences. As an interesting consequence, we obtained the decomposition theorem for an ergodic α-mapping on the Bergman space of holomorphic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信