{"title":"具有历史相关算子的动态半分不等式的半离散数值逼近","authors":"Yujie Li, Xiaoliang Cheng, Hailing Xuan","doi":"10.1080/00036811.2023.2271031","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, we are concerned with a class of second-order hemivariational inequalities involving history-dependent operators. For the problem, we first derive a semidiscrete scheme by implicit Euler formula and prove its unique solvability. The existence and uniqueness of a solution to the inequality problem is given by Rothe method. As the core part of the paper, we propose a two-step semidiscrete approximation for the problem, provide its unique solvability and obtain its second-order error estimates. The two-step scheme is more accurate than the standard implicit Euler scheme. Finally, we apply the results to a dynamic frictionless contact problem with long memory.Keywords: Hemivariational inequalitycontact problemhistory-dependent operatorerror estimatesMathematic Subject classifications: 65M1565N2274H15 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was supported by the European Unions Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grand Agreement No. 823731 CONMECH.","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semidiscrete numerical approximation for dynamic hemivariational inequalities with history-dependent operators\",\"authors\":\"Yujie Li, Xiaoliang Cheng, Hailing Xuan\",\"doi\":\"10.1080/00036811.2023.2271031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper, we are concerned with a class of second-order hemivariational inequalities involving history-dependent operators. For the problem, we first derive a semidiscrete scheme by implicit Euler formula and prove its unique solvability. The existence and uniqueness of a solution to the inequality problem is given by Rothe method. As the core part of the paper, we propose a two-step semidiscrete approximation for the problem, provide its unique solvability and obtain its second-order error estimates. The two-step scheme is more accurate than the standard implicit Euler scheme. Finally, we apply the results to a dynamic frictionless contact problem with long memory.Keywords: Hemivariational inequalitycontact problemhistory-dependent operatorerror estimatesMathematic Subject classifications: 65M1565N2274H15 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was supported by the European Unions Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grand Agreement No. 823731 CONMECH.\",\"PeriodicalId\":55507,\"journal\":{\"name\":\"Applicable Analysis\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00036811.2023.2271031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00036811.2023.2271031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Semidiscrete numerical approximation for dynamic hemivariational inequalities with history-dependent operators
AbstractIn this paper, we are concerned with a class of second-order hemivariational inequalities involving history-dependent operators. For the problem, we first derive a semidiscrete scheme by implicit Euler formula and prove its unique solvability. The existence and uniqueness of a solution to the inequality problem is given by Rothe method. As the core part of the paper, we propose a two-step semidiscrete approximation for the problem, provide its unique solvability and obtain its second-order error estimates. The two-step scheme is more accurate than the standard implicit Euler scheme. Finally, we apply the results to a dynamic frictionless contact problem with long memory.Keywords: Hemivariational inequalitycontact problemhistory-dependent operatorerror estimatesMathematic Subject classifications: 65M1565N2274H15 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was supported by the European Unions Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grand Agreement No. 823731 CONMECH.
期刊介绍:
Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal
General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.