{"title":"有效弦和紧化膜上的s矩阵","authors":"Fiona Seibold, Arkady A Tseytlin","doi":"10.1088/1751-8121/ad05f0","DOIUrl":null,"url":null,"abstract":"Abstract Expanding Nambu–Goto action near infinitely long string vacuum one can compute scattering amplitudes of 2d massless fields representing transverse string coordinates. As was shown in (Dubovsky et al 2012 J. High Energy Phys. JHEP09(2012)044), the resulting S-matrix is integrable (provided appropriate local counterterms are added), in agreement with known free string spectrum and also with an interpretation of the static-gauge NG action as a <?CDATA $T\\bar{T}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>T</mml:mi> <mml:mover> <mml:mi>T</mml:mi> <mml:mo>ˉ</mml:mo> </mml:mover> </mml:math> deformation of a free massless theory. We consider a generalization of this computation to the case of a membrane, expanding its 3d action near an infinite membrane vacuum that has cylindrical <?CDATA $\\mathbb{R} \\times S^1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> shape (we refer to such membrane as ‘compactified’). Representing 3d fields as Fourier series in S 1 coordinate we get an effective 2d model in which the massless string modes are coupled to an infinite KK tower of massive 2d modes. We find that the resulting 2d S-matrix is not integrable already at the tree level. We also compute 1-loop scattering amplitude of massless string modes with all compactified membrane modes propagating in the loop. The result is UV finite and is a non-trivial function of the kinematic variables. In the large momentum limit or when the radius of S 1 is taken to infinity we recover the expression for the 1-loop scattering amplitude of the uncompactified <?CDATA $\\mathbb{R}^2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> membrane. We also consider a 2d model which is the <?CDATA $T\\bar{T}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>T</mml:mi> <mml:mover> <mml:mi>T</mml:mi> <mml:mo>ˉ</mml:mo> </mml:mover> </mml:math> deformation to the free theory with the same massless plus infinite massive tower of modes. The corresponding 2d S-matrix is found, as expected, to be integrable. Contribution to the special issue of Journal of Physics A: ‘Fields, Gravity, Strings and Beyond: In Memory of Stanley Deser’","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"168 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"S-matrix on effective string and compactified membrane\",\"authors\":\"Fiona Seibold, Arkady A Tseytlin\",\"doi\":\"10.1088/1751-8121/ad05f0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Expanding Nambu–Goto action near infinitely long string vacuum one can compute scattering amplitudes of 2d massless fields representing transverse string coordinates. As was shown in (Dubovsky et al 2012 J. High Energy Phys. JHEP09(2012)044), the resulting S-matrix is integrable (provided appropriate local counterterms are added), in agreement with known free string spectrum and also with an interpretation of the static-gauge NG action as a <?CDATA $T\\\\bar{T}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>T</mml:mi> <mml:mover> <mml:mi>T</mml:mi> <mml:mo>ˉ</mml:mo> </mml:mover> </mml:math> deformation of a free massless theory. We consider a generalization of this computation to the case of a membrane, expanding its 3d action near an infinite membrane vacuum that has cylindrical <?CDATA $\\\\mathbb{R} \\\\times S^1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:math> shape (we refer to such membrane as ‘compactified’). Representing 3d fields as Fourier series in S 1 coordinate we get an effective 2d model in which the massless string modes are coupled to an infinite KK tower of massive 2d modes. We find that the resulting 2d S-matrix is not integrable already at the tree level. We also compute 1-loop scattering amplitude of massless string modes with all compactified membrane modes propagating in the loop. The result is UV finite and is a non-trivial function of the kinematic variables. In the large momentum limit or when the radius of S 1 is taken to infinity we recover the expression for the 1-loop scattering amplitude of the uncompactified <?CDATA $\\\\mathbb{R}^2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> membrane. We also consider a 2d model which is the <?CDATA $T\\\\bar{T}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>T</mml:mi> <mml:mover> <mml:mi>T</mml:mi> <mml:mo>ˉ</mml:mo> </mml:mover> </mml:math> deformation to the free theory with the same massless plus infinite massive tower of modes. The corresponding 2d S-matrix is found, as expected, to be integrable. Contribution to the special issue of Journal of Physics A: ‘Fields, Gravity, Strings and Beyond: In Memory of Stanley Deser’\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"168 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad05f0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad05f0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在无限长弦真空附近展开Nambu-Goto作用,可以计算表示弦横向坐标的二维无质量场的散射振幅。如(Dubovsky et al . 2012 . J. High Energy physics)所示。JHEP09(2012)044),得到的s矩阵是可积的(如果添加适当的局部反项),这与已知的自由弦谱一致,也与将静态规范NG作用解释为自由无质量理论的T - T - h变形一致。我们考虑将这种计算推广到膜的情况,在具有圆柱形R × s1形状的无限膜真空附近扩展其三维作用(我们将这种膜称为“紧化”)。将三维场表示为s1坐标系下的傅里叶级数,得到了一个有效的二维模型,其中无质量弦模耦合到一个由大量二维模组成的无限KK塔。我们发现所得到的二维s矩阵在树级上已经不可积了。我们还计算了所有紧化膜模在环内传播的无质量弦模的1环散射振幅。结果是UV有限的,并且是运动变量的非平凡函数。在大动量极限下或s1半径取为无穷大时,我们恢复了非紧化r2膜的1环散射振幅表达式。我们还考虑了一个二维模型,它是自由理论的T - T - h变形,具有相同的无质量加无限质量模态塔。如预期的那样,相应的二维s矩阵是可积的。对《物理杂志A》特刊的贡献:“场、引力、弦及其他:纪念Stanley Deser”
S-matrix on effective string and compactified membrane
Abstract Expanding Nambu–Goto action near infinitely long string vacuum one can compute scattering amplitudes of 2d massless fields representing transverse string coordinates. As was shown in (Dubovsky et al 2012 J. High Energy Phys. JHEP09(2012)044), the resulting S-matrix is integrable (provided appropriate local counterterms are added), in agreement with known free string spectrum and also with an interpretation of the static-gauge NG action as a TTˉ deformation of a free massless theory. We consider a generalization of this computation to the case of a membrane, expanding its 3d action near an infinite membrane vacuum that has cylindrical R×S1 shape (we refer to such membrane as ‘compactified’). Representing 3d fields as Fourier series in S 1 coordinate we get an effective 2d model in which the massless string modes are coupled to an infinite KK tower of massive 2d modes. We find that the resulting 2d S-matrix is not integrable already at the tree level. We also compute 1-loop scattering amplitude of massless string modes with all compactified membrane modes propagating in the loop. The result is UV finite and is a non-trivial function of the kinematic variables. In the large momentum limit or when the radius of S 1 is taken to infinity we recover the expression for the 1-loop scattering amplitude of the uncompactified R2 membrane. We also consider a 2d model which is the TTˉ deformation to the free theory with the same massless plus infinite massive tower of modes. The corresponding 2d S-matrix is found, as expected, to be integrable. Contribution to the special issue of Journal of Physics A: ‘Fields, Gravity, Strings and Beyond: In Memory of Stanley Deser’