Fabian Jung, Niels Grigat, Ben Vollbrecht, Thomas Gries
{"title":"用三维编织和压滑铸造实现全氧化物CMC元件的功能化:减少密集增强纺织品过滤效果的方法","authors":"Fabian Jung, Niels Grigat, Ben Vollbrecht, Thomas Gries","doi":"10.1115/1.4063531","DOIUrl":null,"url":null,"abstract":"Abstract A key element for the transition to sustainable energy lies in the transformation of the power plant fleet, which is dominated by fossil fuels, toward sustainable energy production from renewable energy sources. An increase in efficiency and reduction of exhaust gas emissions, especially the minimization of CO2 emissions, is possible through the use of new turbine materials, which can withstand higher temperature levels. Oxide ceramics are well known for their high stability in aggressive environments, low density, high melting point, high stiffness, and great creep resistance, but their brittleness has strongly limited their number of applications. Therefore, the implementation of fiber reinforcement using the three-dimensional (3D) braiding process shows great potential to increase the damage tolerance of ceramic matrix composites (CMC) and consequently the performance of thermal machines significantly. Currently, the impregnation of 3D braids for the reinforcement of ceramic composites poses a challenge due to the high packing density of the textiles. In order to enable a homogeneous impregnation of the fiber structures using highly viscous ceramic slurries, the CMC research group at RWTH Aachen University's Institute of Textile Technology (ITA) is investigating the combination of 3D braiding and pressure slip casting for an economical production of all-oxide CMCs. To increase the impregnation quality of dense textiles, this paper describes approaches to reduce the filter effect of braids. The results of an initial investigation into the functionalization of two-dimensional braided reinforcement structures by using support structures and flow aids are described. The effectiveness of the impregnation ability is assessed by evaluating the residual porosity of generated green compacts via μCT analysis.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"180 S465","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles\",\"authors\":\"Fabian Jung, Niels Grigat, Ben Vollbrecht, Thomas Gries\",\"doi\":\"10.1115/1.4063531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A key element for the transition to sustainable energy lies in the transformation of the power plant fleet, which is dominated by fossil fuels, toward sustainable energy production from renewable energy sources. An increase in efficiency and reduction of exhaust gas emissions, especially the minimization of CO2 emissions, is possible through the use of new turbine materials, which can withstand higher temperature levels. Oxide ceramics are well known for their high stability in aggressive environments, low density, high melting point, high stiffness, and great creep resistance, but their brittleness has strongly limited their number of applications. Therefore, the implementation of fiber reinforcement using the three-dimensional (3D) braiding process shows great potential to increase the damage tolerance of ceramic matrix composites (CMC) and consequently the performance of thermal machines significantly. Currently, the impregnation of 3D braids for the reinforcement of ceramic composites poses a challenge due to the high packing density of the textiles. In order to enable a homogeneous impregnation of the fiber structures using highly viscous ceramic slurries, the CMC research group at RWTH Aachen University's Institute of Textile Technology (ITA) is investigating the combination of 3D braiding and pressure slip casting for an economical production of all-oxide CMCs. To increase the impregnation quality of dense textiles, this paper describes approaches to reduce the filter effect of braids. The results of an initial investigation into the functionalization of two-dimensional braided reinforcement structures by using support structures and flow aids are described. The effectiveness of the impregnation ability is assessed by evaluating the residual porosity of generated green compacts via μCT analysis.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":\"180 S465\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
Abstract A key element for the transition to sustainable energy lies in the transformation of the power plant fleet, which is dominated by fossil fuels, toward sustainable energy production from renewable energy sources. An increase in efficiency and reduction of exhaust gas emissions, especially the minimization of CO2 emissions, is possible through the use of new turbine materials, which can withstand higher temperature levels. Oxide ceramics are well known for their high stability in aggressive environments, low density, high melting point, high stiffness, and great creep resistance, but their brittleness has strongly limited their number of applications. Therefore, the implementation of fiber reinforcement using the three-dimensional (3D) braiding process shows great potential to increase the damage tolerance of ceramic matrix composites (CMC) and consequently the performance of thermal machines significantly. Currently, the impregnation of 3D braids for the reinforcement of ceramic composites poses a challenge due to the high packing density of the textiles. In order to enable a homogeneous impregnation of the fiber structures using highly viscous ceramic slurries, the CMC research group at RWTH Aachen University's Institute of Textile Technology (ITA) is investigating the combination of 3D braiding and pressure slip casting for an economical production of all-oxide CMCs. To increase the impregnation quality of dense textiles, this paper describes approaches to reduce the filter effect of braids. The results of an initial investigation into the functionalization of two-dimensional braided reinforcement structures by using support structures and flow aids are described. The effectiveness of the impregnation ability is assessed by evaluating the residual porosity of generated green compacts via μCT analysis.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.