涡轮机械气动弹性非线性结构的降阶模型

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Theo Flament, Jean-François Deü, Antoine Placzek, Mikel Balmaseda Aguirre, Duc-Minh Tran
{"title":"涡轮机械气动弹性非线性结构的降阶模型","authors":"Theo Flament, Jean-François Deü, Antoine Placzek, Mikel Balmaseda Aguirre, Duc-Minh Tran","doi":"10.1115/1.4063544","DOIUrl":null,"url":null,"abstract":"Abstract This work concerns the numerical modeling of geometric nonlinear vibrations of slender structures in rotation using an original reduced order model based on the use of dual modes along with the implicit condensation method. This approach is an improvement of the classical ICE method in the sense that the membrane stretching effect is taken into account in the dynamic resolution. The dynamics equations are first presented and the construction of the reduced order model (ROM) is then proposed. The second part of the paper deals with numerical applications using the finite element method, first for a three-dimensional cantilever beam, then for an Ultra-High Bypass Ratio (UHBR) fan blade subject to aerodynamic loads. In the applications considered, the proposed method predicts more accurately the geometrically nonlinear behavior than the ICE method.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Order Model of Nonlinear Structures for Turbomachinery Aeroelasticity\",\"authors\":\"Theo Flament, Jean-François Deü, Antoine Placzek, Mikel Balmaseda Aguirre, Duc-Minh Tran\",\"doi\":\"10.1115/1.4063544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work concerns the numerical modeling of geometric nonlinear vibrations of slender structures in rotation using an original reduced order model based on the use of dual modes along with the implicit condensation method. This approach is an improvement of the classical ICE method in the sense that the membrane stretching effect is taken into account in the dynamic resolution. The dynamics equations are first presented and the construction of the reduced order model (ROM) is then proposed. The second part of the paper deals with numerical applications using the finite element method, first for a three-dimensional cantilever beam, then for an Ultra-High Bypass Ratio (UHBR) fan blade subject to aerodynamic loads. In the applications considered, the proposed method predicts more accurately the geometrically nonlinear behavior than the ICE method.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063544\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文采用基于双模态和隐式凝聚法的原始降阶模型,对细长结构在旋转过程中的几何非线性振动进行了数值模拟。该方法是对经典ICE方法的改进,在动态分辨率中考虑了膜拉伸效应。首先给出了动力学方程,然后提出了降阶模型(ROM)的构造。论文的第二部分讨论了有限元方法的数值应用,首先是三维悬臂梁,然后是受气动载荷影响的超高涵道比风扇叶片。在考虑的应用中,所提出的方法比ICE方法更准确地预测几何非线性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Order Model of Nonlinear Structures for Turbomachinery Aeroelasticity
Abstract This work concerns the numerical modeling of geometric nonlinear vibrations of slender structures in rotation using an original reduced order model based on the use of dual modes along with the implicit condensation method. This approach is an improvement of the classical ICE method in the sense that the membrane stretching effect is taken into account in the dynamic resolution. The dynamics equations are first presented and the construction of the reduced order model (ROM) is then proposed. The second part of the paper deals with numerical applications using the finite element method, first for a three-dimensional cantilever beam, then for an Ultra-High Bypass Ratio (UHBR) fan blade subject to aerodynamic loads. In the applications considered, the proposed method predicts more accurately the geometrically nonlinear behavior than the ICE method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信