局部环上矩阵的若干分解

IF 0.5 3区 数学 Q3 MATHEMATICS
M. H. Bien, P. T. Nhan, N. H. T. Nhat
{"title":"局部环上矩阵的若干分解","authors":"M. H. Bien, P. T. Nhan, N. H. T. Nhat","doi":"10.1142/s0219498825500884","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a local ring with maximal ideal [Formula: see text], let [Formula: see text] be a natural number greater than [Formula: see text] and let [Formula: see text] be a matrix in the general linear group [Formula: see text] of degree [Formula: see text] over [Formula: see text]. We firstly show that if the matrix [Formula: see text] is nonscalar in [Formula: see text] and [Formula: see text] are invertible elements in [Formula: see text], then there exists an invertible element [Formula: see text] such that [Formula: see text] is similar to the product [Formula: see text] in which [Formula: see text] is a lower uni-triangular matrix and [Formula: see text] is an upper triangular matrix whose diagonal entries are [Formula: see text]. We then present some applications of this factorization to find decompositions of matrices in [Formula: see text] into product of commutators and involutions.","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"178 S440","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Certain Decompositions of Matrices Over Local Rings\",\"authors\":\"M. H. Bien, P. T. Nhan, N. H. T. Nhat\",\"doi\":\"10.1142/s0219498825500884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a local ring with maximal ideal [Formula: see text], let [Formula: see text] be a natural number greater than [Formula: see text] and let [Formula: see text] be a matrix in the general linear group [Formula: see text] of degree [Formula: see text] over [Formula: see text]. We firstly show that if the matrix [Formula: see text] is nonscalar in [Formula: see text] and [Formula: see text] are invertible elements in [Formula: see text], then there exists an invertible element [Formula: see text] such that [Formula: see text] is similar to the product [Formula: see text] in which [Formula: see text] is a lower uni-triangular matrix and [Formula: see text] is an upper triangular matrix whose diagonal entries are [Formula: see text]. We then present some applications of this factorization to find decompositions of matrices in [Formula: see text] into product of commutators and involutions.\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"178 S440\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825500884\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825500884","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个具有极大理想的局部环[公式:见文],设[公式:见文]是一个大于[公式:见文]的自然数,设[公式:见文]是一个次数[公式:见文]大于[公式:见文]的一般线性群[公式:见文]中的矩阵。我们首先证明,如果矩阵[公式:见文]在[公式:见文]中为非标量,[公式:见文]在[公式:见文]中为可逆元素,则存在一个可逆元素[公式:见文]使得[公式:见文]与乘积[公式:见文]相似,其中[公式:见文]是下单三角矩阵,[公式:见文]是上三角矩阵,其对角线项为[公式:见文]。然后,我们给出了这种分解的一些应用,以找到[公式:见文本]中的矩阵分解为对易子和对合的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Certain Decompositions of Matrices Over Local Rings
Let [Formula: see text] be a local ring with maximal ideal [Formula: see text], let [Formula: see text] be a natural number greater than [Formula: see text] and let [Formula: see text] be a matrix in the general linear group [Formula: see text] of degree [Formula: see text] over [Formula: see text]. We firstly show that if the matrix [Formula: see text] is nonscalar in [Formula: see text] and [Formula: see text] are invertible elements in [Formula: see text], then there exists an invertible element [Formula: see text] such that [Formula: see text] is similar to the product [Formula: see text] in which [Formula: see text] is a lower uni-triangular matrix and [Formula: see text] is an upper triangular matrix whose diagonal entries are [Formula: see text]. We then present some applications of this factorization to find decompositions of matrices in [Formula: see text] into product of commutators and involutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信