{"title":"非常一般的曲线和同构上的几何局部系统","authors":"Aaron Landesman, Daniel Litt","doi":"10.1090/jams/1038","DOIUrl":null,"url":null,"abstract":"We show that the minimum rank of a non-isotrivial local system of geometric origin on a suitably general <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pointed curve of genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\"application/x-tex\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 StartRoot g plus 1 EndRoot\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2\\sqrt {g+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We apply this result to resolve conjectures of Esnault-Kerz and Budur-Wang. The main input is an analysis of stability properties of flat vector bundles under isomonodromic deformations, which additionally answers questions of Biswas, Heu, and Hurtubise.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"179 S446","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric local systems on very general curves and isomonodromy\",\"authors\":\"Aaron Landesman, Daniel Litt\",\"doi\":\"10.1090/jams/1038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the minimum rank of a non-isotrivial local system of geometric origin on a suitably general <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pointed curve of genus <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is at least <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 StartRoot g plus 1 EndRoot\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>g</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2\\\\sqrt {g+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We apply this result to resolve conjectures of Esnault-Kerz and Budur-Wang. The main input is an analysis of stability properties of flat vector bundles under isomonodromic deformations, which additionally answers questions of Biswas, Heu, and Hurtubise.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"179 S446\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1038\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1038","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometric local systems on very general curves and isomonodromy
We show that the minimum rank of a non-isotrivial local system of geometric origin on a suitably general nn-pointed curve of genus gg is at least 2g+12\sqrt {g+1}. We apply this result to resolve conjectures of Esnault-Kerz and Budur-Wang. The main input is an analysis of stability properties of flat vector bundles under isomonodromic deformations, which additionally answers questions of Biswas, Heu, and Hurtubise.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.