直纹曲面的磁球指标

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Alperen Yildirim, Emin Kasap
{"title":"直纹曲面的磁球指标","authors":"Alperen Yildirim, Emin Kasap","doi":"10.1142/s0219887824500683","DOIUrl":null,"url":null,"abstract":"The spherical indicatrix of a ruled surface is the image curve of its rulings on the sphere [Formula: see text]. In this paper, we present Lorentz forces and magnetic curves produced by the Frenet frame [Formula: see text] of the spherical indicatrix of a ruled surface in a magnetic field. We calculate magnetic vector fields of magnetic curves for [Formula: see text]. Furthermore, we define magnetic flux surfaces constructed by magnetic vector fields along magnetic spherical indicatrix. We obtain developability conditions for these surfaces. Finally, we give some examples to show magnetic flux surfaces.","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"176 s418","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Spherical Indicatrix of a Ruled Surface\",\"authors\":\"Alperen Yildirim, Emin Kasap\",\"doi\":\"10.1142/s0219887824500683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spherical indicatrix of a ruled surface is the image curve of its rulings on the sphere [Formula: see text]. In this paper, we present Lorentz forces and magnetic curves produced by the Frenet frame [Formula: see text] of the spherical indicatrix of a ruled surface in a magnetic field. We calculate magnetic vector fields of magnetic curves for [Formula: see text]. Furthermore, we define magnetic flux surfaces constructed by magnetic vector fields along magnetic spherical indicatrix. We obtain developability conditions for these surfaces. Finally, we give some examples to show magnetic flux surfaces.\",\"PeriodicalId\":50320,\"journal\":{\"name\":\"International Journal of Geometric Methods in Modern Physics\",\"volume\":\"176 s418\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geometric Methods in Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219887824500683\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219887824500683","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

直纹曲面的球面指标是其直纹在球面上的像曲线[公式:见正文]。在本文中,我们给出了由磁场中直纹曲面的球面指标的弗莱内框架[公式:见文]所产生的洛伦兹力和磁曲线。我们计算了[公式:见原文]的磁曲线的磁场矢量。在此基础上,定义了磁矢量场沿磁球指标构成的磁通曲面。我们得到了这些曲面的可展性条件。最后,我们给出了一些例子来说明磁通面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic Spherical Indicatrix of a Ruled Surface
The spherical indicatrix of a ruled surface is the image curve of its rulings on the sphere [Formula: see text]. In this paper, we present Lorentz forces and magnetic curves produced by the Frenet frame [Formula: see text] of the spherical indicatrix of a ruled surface in a magnetic field. We calculate magnetic vector fields of magnetic curves for [Formula: see text]. Furthermore, we define magnetic flux surfaces constructed by magnetic vector fields along magnetic spherical indicatrix. We obtain developability conditions for these surfaces. Finally, we give some examples to show magnetic flux surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信