s -局部顶点算子代数V#H不可约容许模的分类

IF 0.5 3区 数学 Q3 MATHEMATICS
Fang Du, Hao Wang
{"title":"s -局部顶点算子代数V#H不可约容许模的分类","authors":"Fang Du, Hao Wang","doi":"10.1142/s0219498825501038","DOIUrl":null,"url":null,"abstract":"For an [Formula: see text]-local vertex operator algebra [Formula: see text], where [Formula: see text] is a simple vertex operator algebra, and [Formula: see text] is the group algebra of a finite subgroup of [Formula: see text], Frobenius reciprocity is investigated. We give an explicit construction and classification of admissible [Formula: see text]-modules in terms of admissible [Formula: see text]-modules. We also give a complete set of irreducible inequivalent admissible [Formula: see text]-modules.","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of irreducible admissible modules for <i>S</i>-local vertex operator algebra <i>V</i>#<i>H</i>\",\"authors\":\"Fang Du, Hao Wang\",\"doi\":\"10.1142/s0219498825501038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an [Formula: see text]-local vertex operator algebra [Formula: see text], where [Formula: see text] is a simple vertex operator algebra, and [Formula: see text] is the group algebra of a finite subgroup of [Formula: see text], Frobenius reciprocity is investigated. We give an explicit construction and classification of admissible [Formula: see text]-modules in terms of admissible [Formula: see text]-modules. We also give a complete set of irreducible inequivalent admissible [Formula: see text]-modules.\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825501038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825501038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个[公式:见文]-局部顶点算子代数[公式:见文],其中[公式:见文]是一个简单顶点算子代数,[公式:见文]是[公式:见文]的一个有限子群的群代数,研究了Frobenius互易性。我们根据可容许的[公式:见文]-模块给出了可容许的[公式:见文]-模块的显式构造和分类。我们也给出了不可约的不等价可容许模的完备集合[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of irreducible admissible modules for S-local vertex operator algebra V#H
For an [Formula: see text]-local vertex operator algebra [Formula: see text], where [Formula: see text] is a simple vertex operator algebra, and [Formula: see text] is the group algebra of a finite subgroup of [Formula: see text], Frobenius reciprocity is investigated. We give an explicit construction and classification of admissible [Formula: see text]-modules in terms of admissible [Formula: see text]-modules. We also give a complete set of irreducible inequivalent admissible [Formula: see text]-modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信