{"title":"s -局部顶点算子代数V#H不可约容许模的分类","authors":"Fang Du, Hao Wang","doi":"10.1142/s0219498825501038","DOIUrl":null,"url":null,"abstract":"For an [Formula: see text]-local vertex operator algebra [Formula: see text], where [Formula: see text] is a simple vertex operator algebra, and [Formula: see text] is the group algebra of a finite subgroup of [Formula: see text], Frobenius reciprocity is investigated. We give an explicit construction and classification of admissible [Formula: see text]-modules in terms of admissible [Formula: see text]-modules. We also give a complete set of irreducible inequivalent admissible [Formula: see text]-modules.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of irreducible admissible modules for <i>S</i>-local vertex operator algebra <i>V</i>#<i>H</i>\",\"authors\":\"Fang Du, Hao Wang\",\"doi\":\"10.1142/s0219498825501038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an [Formula: see text]-local vertex operator algebra [Formula: see text], where [Formula: see text] is a simple vertex operator algebra, and [Formula: see text] is the group algebra of a finite subgroup of [Formula: see text], Frobenius reciprocity is investigated. We give an explicit construction and classification of admissible [Formula: see text]-modules in terms of admissible [Formula: see text]-modules. We also give a complete set of irreducible inequivalent admissible [Formula: see text]-modules.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825501038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825501038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of irreducible admissible modules for S-local vertex operator algebra V#H
For an [Formula: see text]-local vertex operator algebra [Formula: see text], where [Formula: see text] is a simple vertex operator algebra, and [Formula: see text] is the group algebra of a finite subgroup of [Formula: see text], Frobenius reciprocity is investigated. We give an explicit construction and classification of admissible [Formula: see text]-modules in terms of admissible [Formula: see text]-modules. We also give a complete set of irreducible inequivalent admissible [Formula: see text]-modules.