{"title":"关于霍奇轨迹的分布","authors":"Gregorio Baldi, Bruno Klingler, Emmanuel Ullmo","doi":"10.1007/s00222-023-01226-0","DOIUrl":null,"url":null,"abstract":"Abstract Given a polarizable ℤ-variation of Hodge structures $\\mathbb{V}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> </mml:math> over a complex smooth quasi-projective base $S$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> , a classical result of Cattani, Deligne and Kaplan says that its Hodge locus (i.e. the locus where exceptional Hodge tensors appear) is a countable union of irreducible algebraic subvarieties of $S$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> , called the special subvarieties for $\\mathbb{V}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> </mml:math> . Our main result in this paper is that, if the level of ${\\mathbb{V}}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> </mml:math> is at least 3, this Hodge locus is in fact a finite union of such special subvarieties (hence is algebraic), at least if we restrict ourselves to the Hodge locus factorwise of positive period dimension (Theorem 1.5). For instance the Hodge locus of positive period dimension of the universal family of degree $d$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>d</mml:mi> </mml:math> smooth hypersurfaces in $\\mathbf{P}^{n+1}_{\\mathbb{C}}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , $n\\geq 3$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:math> , $d\\geq 5$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:math> and $(n,d)\\neq (4,5)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:math> , is algebraic. On the other hand we prove that in level 1 or 2, the Hodge locus is analytically dense in $S^{\\mbox{an}}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mtext>an</mml:mtext> </mml:msup> </mml:math> as soon as it contains one typical special subvariety. These results follow from a complete elucidation of the distribution in $S$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> of the special subvarieties in terms of typical/atypical intersections, with the exception of the atypical special subvarieties of zero period dimension.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On the distribution of the Hodge locus\",\"authors\":\"Gregorio Baldi, Bruno Klingler, Emmanuel Ullmo\",\"doi\":\"10.1007/s00222-023-01226-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a polarizable ℤ-variation of Hodge structures $\\\\mathbb{V}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>V</mml:mi> </mml:math> over a complex smooth quasi-projective base $S$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> , a classical result of Cattani, Deligne and Kaplan says that its Hodge locus (i.e. the locus where exceptional Hodge tensors appear) is a countable union of irreducible algebraic subvarieties of $S$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> , called the special subvarieties for $\\\\mathbb{V}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>V</mml:mi> </mml:math> . Our main result in this paper is that, if the level of ${\\\\mathbb{V}}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>V</mml:mi> </mml:math> is at least 3, this Hodge locus is in fact a finite union of such special subvarieties (hence is algebraic), at least if we restrict ourselves to the Hodge locus factorwise of positive period dimension (Theorem 1.5). For instance the Hodge locus of positive period dimension of the universal family of degree $d$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>d</mml:mi> </mml:math> smooth hypersurfaces in $\\\\mathbf{P}^{n+1}_{\\\\mathbb{C}}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , $n\\\\geq 3$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:math> , $d\\\\geq 5$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:math> and $(n,d)\\\\neq (4,5)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:math> , is algebraic. On the other hand we prove that in level 1 or 2, the Hodge locus is analytically dense in $S^{\\\\mbox{an}}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>S</mml:mi> <mml:mtext>an</mml:mtext> </mml:msup> </mml:math> as soon as it contains one typical special subvariety. These results follow from a complete elucidation of the distribution in $S$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> of the special subvarieties in terms of typical/atypical intersections, with the exception of the atypical special subvarieties of zero period dimension.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-023-01226-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00222-023-01226-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 19
摘要
摘要给定复杂光滑拟射光基$S$ S上的Hodge结构$\mathbb{V}$ V的一个可极化变分,Cattani, Deligne和Kaplan的经典结果表明,它的Hodge轨迹(即例外Hodge张量出现的轨迹)是$S$ S的不可约代数子变种的可数并,称为$\mathbb{V}$ V的特殊子变种。本文的主要结果是,如果${\mathbb{V}}$ V的阶数至少为3,那么这个Hodge轨迹实际上是这类特殊子变量的有限并(因此是代数的),至少如果我们将Hodge轨迹限制为正周期维数(定理1.5)。例如,在$\mathbf{P}^{n+1}_{\mathbb{C}}$ P C n + 1, $n\geq 3$ n≥3,$d\geq 5$ d≥5和$(n,d)\neq (4,5)$ (n, d)≠(4,5)条件下,阶次为$d$ d的光滑超曲面泛族的正周期维的Hodge轨迹是代数的。另一方面,我们证明了在一级或二级,Hodge基因座在$S^{\mbox{an}}$ S an中只要包含一个典型的特殊亚种就是解析密集的。这些结果来自于对$S$ S中除零周期维的非典型特殊子变种外的典型/非典型交集的分布的完整阐明。
Abstract Given a polarizable ℤ-variation of Hodge structures $\mathbb{V}$ V over a complex smooth quasi-projective base $S$ S , a classical result of Cattani, Deligne and Kaplan says that its Hodge locus (i.e. the locus where exceptional Hodge tensors appear) is a countable union of irreducible algebraic subvarieties of $S$ S , called the special subvarieties for $\mathbb{V}$ V . Our main result in this paper is that, if the level of ${\mathbb{V}}$ V is at least 3, this Hodge locus is in fact a finite union of such special subvarieties (hence is algebraic), at least if we restrict ourselves to the Hodge locus factorwise of positive period dimension (Theorem 1.5). For instance the Hodge locus of positive period dimension of the universal family of degree $d$ d smooth hypersurfaces in $\mathbf{P}^{n+1}_{\mathbb{C}}$ PCn+1 , $n\geq 3$ n≥3 , $d\geq 5$ d≥5 and $(n,d)\neq (4,5)$ (n,d)≠(4,5) , is algebraic. On the other hand we prove that in level 1 or 2, the Hodge locus is analytically dense in $S^{\mbox{an}}$ San as soon as it contains one typical special subvariety. These results follow from a complete elucidation of the distribution in $S$ S of the special subvarieties in terms of typical/atypical intersections, with the exception of the atypical special subvarieties of zero period dimension.