{"title":"2环面上强紧型泊松流形","authors":"Luka Zwaan","doi":"10.2140/pjm.2023.325.353","DOIUrl":null,"url":null,"abstract":"In arXiv1312.7267, the first non-trivial example of a Poisson manifold of strong compact type is given. The construction uses the theory of K3 surfaces and results in a Poisson manifold with leaf space $S^1$. We modify the construction to obtain a new class of examples. Specifically, we obtain for each strongly integral affine 2-torus a Poisson manifold of strong compact type with said torus as leaf space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poisson manifolds of strong compact type over 2-tori\",\"authors\":\"Luka Zwaan\",\"doi\":\"10.2140/pjm.2023.325.353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arXiv1312.7267, the first non-trivial example of a Poisson manifold of strong compact type is given. The construction uses the theory of K3 surfaces and results in a Poisson manifold with leaf space $S^1$. We modify the construction to obtain a new class of examples. Specifically, we obtain for each strongly integral affine 2-torus a Poisson manifold of strong compact type with said torus as leaf space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.325.353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poisson manifolds of strong compact type over 2-tori
In arXiv1312.7267, the first non-trivial example of a Poisson manifold of strong compact type is given. The construction uses the theory of K3 surfaces and results in a Poisson manifold with leaf space $S^1$. We modify the construction to obtain a new class of examples. Specifically, we obtain for each strongly integral affine 2-torus a Poisson manifold of strong compact type with said torus as leaf space.