热带拉格朗日多截面与环向矢量束

Pub Date : 2023-11-03 DOI:10.2140/pjm.2023.325.299
Yat-Hin Suen
{"title":"热带拉格朗日多截面与环向矢量束","authors":"Yat-Hin Suen","doi":"10.2140/pjm.2023.325.299","DOIUrl":null,"url":null,"abstract":"It is well-known that toric line bundles on a toric variety correspond to piecewise linear functions on the fan. For toric vector bundles, Payne constructed a branched covering over the fan and a piecewise linear function on the domain. We think of these objects as the tropicalization of Lagrangian multi-sections and therefore, deserve the name tropical Lagrangian multi-sections. In this paper, we study the reconstruction problem of toric vector bundles from a given tropical Lagrangian multi-section. Those tropical Lagrangian multi-sections that arise from toric vector bundles are called unobstructed. We reformulate Kaneyama's classification of toric vector bundles in terms of the language of tropical Lagrangian multi-sections. We also provide a ``SYZ-type approach to construct toric vector bundles from tropical Lagrangian multi-sections. In dimension 2, such ``mirror-symmetric approach provides us a combinatorial condition for checking which rank 2 tropical Lagrangian multi-section is unobstructed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tropical Lagrangian multisections and toric vector bundles\",\"authors\":\"Yat-Hin Suen\",\"doi\":\"10.2140/pjm.2023.325.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that toric line bundles on a toric variety correspond to piecewise linear functions on the fan. For toric vector bundles, Payne constructed a branched covering over the fan and a piecewise linear function on the domain. We think of these objects as the tropicalization of Lagrangian multi-sections and therefore, deserve the name tropical Lagrangian multi-sections. In this paper, we study the reconstruction problem of toric vector bundles from a given tropical Lagrangian multi-section. Those tropical Lagrangian multi-sections that arise from toric vector bundles are called unobstructed. We reformulate Kaneyama's classification of toric vector bundles in terms of the language of tropical Lagrangian multi-sections. We also provide a ``SYZ-type approach to construct toric vector bundles from tropical Lagrangian multi-sections. In dimension 2, such ``mirror-symmetric approach provides us a combinatorial condition for checking which rank 2 tropical Lagrangian multi-section is unobstructed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.325.299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

众所周知,一个环面品种上的环面线束对应于风机上的分段线性函数。对于环向矢量束,Payne在扇形上构造了分支覆盖,在区域上构造了分段线性函数。我们认为这些物体是拉格朗日多截面的热带化因此,它们应该被称为热带拉格朗日多截面。本文研究了给定热带拉格朗日多截面上环向矢量束的重构问题。那些由环形矢量束产生的热带拉格朗日多截面被称为无阻碍。我们用热带拉格朗日多截面语言重新表述了Kaneyama对环向矢量束的分类。我们还提供了从热带拉格朗日多截面构造环向矢量束的“”syz型方法。在2维,这种“镜像对称”方法为我们提供了检验2阶热带拉格朗日多截面是否通畅的组合条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tropical Lagrangian multisections and toric vector bundles
It is well-known that toric line bundles on a toric variety correspond to piecewise linear functions on the fan. For toric vector bundles, Payne constructed a branched covering over the fan and a piecewise linear function on the domain. We think of these objects as the tropicalization of Lagrangian multi-sections and therefore, deserve the name tropical Lagrangian multi-sections. In this paper, we study the reconstruction problem of toric vector bundles from a given tropical Lagrangian multi-section. Those tropical Lagrangian multi-sections that arise from toric vector bundles are called unobstructed. We reformulate Kaneyama's classification of toric vector bundles in terms of the language of tropical Lagrangian multi-sections. We also provide a ``SYZ-type approach to construct toric vector bundles from tropical Lagrangian multi-sections. In dimension 2, such ``mirror-symmetric approach provides us a combinatorial condition for checking which rank 2 tropical Lagrangian multi-section is unobstructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信