拉格朗日坐标和拉格朗日手术

IF 1.1 3区 数学 Q1 MATHEMATICS
Jeff Hicks
{"title":"拉格朗日坐标和拉格朗日手术","authors":"Jeff Hicks","doi":"10.4171/cmh/554","DOIUrl":null,"url":null,"abstract":"Lagrangian surgery and Lagrangian cobordism give geometric interpretations to exact triangles in Floer cohomology. Lagrangian $k$-surgery modifies an immersed Lagrangian submanifold by topological $k$-surgery while removing a self-intersection point of the immersion. Associated to a $k$-surgery is a Lagrangian surgery trace cobordism. We prove that every Lagrangian cobordism is exactly homotopic to a concatenation of suspension cobordisms and Lagrangian surgery traces. Furthermore, we show that each Lagrangian surgery trace bounds a holomorphic teardrop pairing the Morse cochain associated to the handle attachment with the Floer cochain generated by the self-intersection. We give a sample computation for how these decompositions can be used to algorithmically construct bounding cochains for Lagrangian submanifolds, recover the Lagrangian surgery exact sequence, and provide conditions for when non-monotone Lagrangian cobordisms yield continuation maps in the Fukaya category.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangian cobordisms and Lagrangian surgery\",\"authors\":\"Jeff Hicks\",\"doi\":\"10.4171/cmh/554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lagrangian surgery and Lagrangian cobordism give geometric interpretations to exact triangles in Floer cohomology. Lagrangian $k$-surgery modifies an immersed Lagrangian submanifold by topological $k$-surgery while removing a self-intersection point of the immersion. Associated to a $k$-surgery is a Lagrangian surgery trace cobordism. We prove that every Lagrangian cobordism is exactly homotopic to a concatenation of suspension cobordisms and Lagrangian surgery traces. Furthermore, we show that each Lagrangian surgery trace bounds a holomorphic teardrop pairing the Morse cochain associated to the handle attachment with the Floer cochain generated by the self-intersection. We give a sample computation for how these decompositions can be used to algorithmically construct bounding cochains for Lagrangian submanifolds, recover the Lagrangian surgery exact sequence, and provide conditions for when non-monotone Lagrangian cobordisms yield continuation maps in the Fukaya category.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/554\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/cmh/554","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

拉格朗日手术和拉格朗日协同给出了花上同调中精确三角形的几何解释。lagrange $k$-surgery通过拓扑$k$-surgery修正浸入式lagrange子流形,同时去除浸入式的自交点。与k -手术相关的是拉格朗日手术轨迹协数。我们证明了每一个拉格朗日配合与悬架配合和拉格朗日手术轨迹的串联是完全同伦的。进一步,我们证明了每个拉格朗日手术轨迹界都是一个全纯泪滴,将与手柄附属相关的莫尔斯协链与自交产生的弗洛尔协链配对。我们给出了一个示例计算,说明如何使用这些分解算法构造拉格朗日子流形的边界协链,恢复拉格朗日手术精确序列,并提供了非单调拉格朗日协链在Fukaya范畴中产生延拓映射的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian cobordisms and Lagrangian surgery
Lagrangian surgery and Lagrangian cobordism give geometric interpretations to exact triangles in Floer cohomology. Lagrangian $k$-surgery modifies an immersed Lagrangian submanifold by topological $k$-surgery while removing a self-intersection point of the immersion. Associated to a $k$-surgery is a Lagrangian surgery trace cobordism. We prove that every Lagrangian cobordism is exactly homotopic to a concatenation of suspension cobordisms and Lagrangian surgery traces. Furthermore, we show that each Lagrangian surgery trace bounds a holomorphic teardrop pairing the Morse cochain associated to the handle attachment with the Floer cochain generated by the self-intersection. We give a sample computation for how these decompositions can be used to algorithmically construct bounding cochains for Lagrangian submanifolds, recover the Lagrangian surgery exact sequence, and provide conditions for when non-monotone Lagrangian cobordisms yield continuation maps in the Fukaya category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信