Dharini Raghavan, H. H. Adithya, S. Raghuram, K. V. Suma, Tricha Kulhalli
{"title":"利用机器学习分析子宫电图信号和预测早产","authors":"Dharini Raghavan, H. H. Adithya, S. Raghuram, K. V. Suma, Tricha Kulhalli","doi":"10.4015/s1016237223500291","DOIUrl":null,"url":null,"abstract":"The World Health Organization (WHO) estimates that over 15 million infants are born before the entire period of pregnancy. Over a million neonatal deaths occurred in 2015 as a result of preterm delivery, which is the prime cause for most deaths among children under the age of five. Although preterm birth has no hereditary link, only 10% of preterm deliveries in high-income settings result in deaths, compared to a mortality rate of up to 90% in low-income nations. When preterm cases are discovered, in addition to enhanced care provided at home for the expecting mother, the growing foetus may also benefit from medication, hospitalization for the duration of the pregnancy, or both. Low-income countries also struggle with a lack of access to a comprehensive healthcare system, which makes it difficult to proactively detect premature births. Machine learning techniques have a great potential to improve this situation by providing an intelligent framework for the detection of critical situations and consequently alerting the individual in cases of anomalies. This will require further follow-up with medical specialists. In this work, we investigate the application of deep learning and machine learning techniques for the analysis of electrohysterogram (EHG) data, which are uterine electrical impulses used to detect preterm deliveries. The TPEHG dataset is used to train a variety of machine learning classifiers, such as Support Vector Machines, Logistic Regression, and Decision Trees, as well as Deep Neural Networks like Convolutional Neural Networks and LSTMs. Additionally, we use plurality voting to build an ensemble of various neural networks and binary classifiers that are trained to classify EHG signals. The ensemble machine learning classifier with five base classifiers produced the best results overall, with an accuracy of 98.99%, sensitivity of 98.3%, and specificity of 97.9% outperforming several state-of-the-art algorithms for preterm birth detection.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"55 7","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF ELECTROHYSTEROGRAM SIGNALS AND PREDICTION OF PRETERM BIRTHS USING MACHINE LEARNING\",\"authors\":\"Dharini Raghavan, H. H. Adithya, S. Raghuram, K. V. Suma, Tricha Kulhalli\",\"doi\":\"10.4015/s1016237223500291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The World Health Organization (WHO) estimates that over 15 million infants are born before the entire period of pregnancy. Over a million neonatal deaths occurred in 2015 as a result of preterm delivery, which is the prime cause for most deaths among children under the age of five. Although preterm birth has no hereditary link, only 10% of preterm deliveries in high-income settings result in deaths, compared to a mortality rate of up to 90% in low-income nations. When preterm cases are discovered, in addition to enhanced care provided at home for the expecting mother, the growing foetus may also benefit from medication, hospitalization for the duration of the pregnancy, or both. Low-income countries also struggle with a lack of access to a comprehensive healthcare system, which makes it difficult to proactively detect premature births. Machine learning techniques have a great potential to improve this situation by providing an intelligent framework for the detection of critical situations and consequently alerting the individual in cases of anomalies. This will require further follow-up with medical specialists. In this work, we investigate the application of deep learning and machine learning techniques for the analysis of electrohysterogram (EHG) data, which are uterine electrical impulses used to detect preterm deliveries. The TPEHG dataset is used to train a variety of machine learning classifiers, such as Support Vector Machines, Logistic Regression, and Decision Trees, as well as Deep Neural Networks like Convolutional Neural Networks and LSTMs. Additionally, we use plurality voting to build an ensemble of various neural networks and binary classifiers that are trained to classify EHG signals. The ensemble machine learning classifier with five base classifiers produced the best results overall, with an accuracy of 98.99%, sensitivity of 98.3%, and specificity of 97.9% outperforming several state-of-the-art algorithms for preterm birth detection.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"55 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237223500291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
ANALYSIS OF ELECTROHYSTEROGRAM SIGNALS AND PREDICTION OF PRETERM BIRTHS USING MACHINE LEARNING
The World Health Organization (WHO) estimates that over 15 million infants are born before the entire period of pregnancy. Over a million neonatal deaths occurred in 2015 as a result of preterm delivery, which is the prime cause for most deaths among children under the age of five. Although preterm birth has no hereditary link, only 10% of preterm deliveries in high-income settings result in deaths, compared to a mortality rate of up to 90% in low-income nations. When preterm cases are discovered, in addition to enhanced care provided at home for the expecting mother, the growing foetus may also benefit from medication, hospitalization for the duration of the pregnancy, or both. Low-income countries also struggle with a lack of access to a comprehensive healthcare system, which makes it difficult to proactively detect premature births. Machine learning techniques have a great potential to improve this situation by providing an intelligent framework for the detection of critical situations and consequently alerting the individual in cases of anomalies. This will require further follow-up with medical specialists. In this work, we investigate the application of deep learning and machine learning techniques for the analysis of electrohysterogram (EHG) data, which are uterine electrical impulses used to detect preterm deliveries. The TPEHG dataset is used to train a variety of machine learning classifiers, such as Support Vector Machines, Logistic Regression, and Decision Trees, as well as Deep Neural Networks like Convolutional Neural Networks and LSTMs. Additionally, we use plurality voting to build an ensemble of various neural networks and binary classifiers that are trained to classify EHG signals. The ensemble machine learning classifier with five base classifiers produced the best results overall, with an accuracy of 98.99%, sensitivity of 98.3%, and specificity of 97.9% outperforming several state-of-the-art algorithms for preterm birth detection.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.