Vladimir I. Tishkov, Anastasia A. Pometun, Svyatoslav S. Savin
{"title":"甲酸脱氢酶:从nad (p) h再生到病原体生物膜中的目标,是高效杂交生物催化剂和大气co2固定的组成部分","authors":"Vladimir I. Tishkov, Anastasia A. Pometun, Svyatoslav S. Savin","doi":"10.55959/msu0579-9384-2-2023-64-4-289-311","DOIUrl":null,"url":null,"abstract":"NAD(P)+ -dependent formate dehydrogenase (EC 1.2.1.2, FDH) catalyzes the simple from chemical and biological point of view reaction of formate ion oxidation to carbon dioxide with corresponding reduction of NAD(P)+ to NAD(P) H. Advances in the life sciences have shown that this reaction plays an extremely important role in a wide variety of organisms. The areas and types of practical applications of FDH are also permanently expanding. In this review we considered the main stages in the development of understanding and knowledge about the role of formate dehydrogenase in living systems. Achievements in creation of highly effi cient catalysts based on FDH for classic biotechnology as well as for new areas are also considered. The importance of appropriate choice of the initial FDH for the creation of a biocatalyst with the required and prescribed properties with minimal costs is shown. The prospects for the use of FDH for the fixation of CO2 are discussed.","PeriodicalId":23660,"journal":{"name":"Vestnik Moskovskogo Universiteta Seriya 2 Khimiya","volume":"13 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FORMATE DEHYDROGENASE: FROM NAD(P)H REGENERATION TO THE TARGET IN PATHOGENS BIOFILMS, A COMPONENT OF HIGHLY EFFICIENT HYBRID BIOCATALYSTS AND CO2 FIXATION FROM THE ATMOSPHERE\",\"authors\":\"Vladimir I. Tishkov, Anastasia A. Pometun, Svyatoslav S. Savin\",\"doi\":\"10.55959/msu0579-9384-2-2023-64-4-289-311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NAD(P)+ -dependent formate dehydrogenase (EC 1.2.1.2, FDH) catalyzes the simple from chemical and biological point of view reaction of formate ion oxidation to carbon dioxide with corresponding reduction of NAD(P)+ to NAD(P) H. Advances in the life sciences have shown that this reaction plays an extremely important role in a wide variety of organisms. The areas and types of practical applications of FDH are also permanently expanding. In this review we considered the main stages in the development of understanding and knowledge about the role of formate dehydrogenase in living systems. Achievements in creation of highly effi cient catalysts based on FDH for classic biotechnology as well as for new areas are also considered. The importance of appropriate choice of the initial FDH for the creation of a biocatalyst with the required and prescribed properties with minimal costs is shown. The prospects for the use of FDH for the fixation of CO2 are discussed.\",\"PeriodicalId\":23660,\"journal\":{\"name\":\"Vestnik Moskovskogo Universiteta Seriya 2 Khimiya\",\"volume\":\"13 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Moskovskogo Universiteta Seriya 2 Khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55959/msu0579-9384-2-2023-64-4-289-311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Moskovskogo Universiteta Seriya 2 Khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55959/msu0579-9384-2-2023-64-4-289-311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FORMATE DEHYDROGENASE: FROM NAD(P)H REGENERATION TO THE TARGET IN PATHOGENS BIOFILMS, A COMPONENT OF HIGHLY EFFICIENT HYBRID BIOCATALYSTS AND CO2 FIXATION FROM THE ATMOSPHERE
NAD(P)+ -dependent formate dehydrogenase (EC 1.2.1.2, FDH) catalyzes the simple from chemical and biological point of view reaction of formate ion oxidation to carbon dioxide with corresponding reduction of NAD(P)+ to NAD(P) H. Advances in the life sciences have shown that this reaction plays an extremely important role in a wide variety of organisms. The areas and types of practical applications of FDH are also permanently expanding. In this review we considered the main stages in the development of understanding and knowledge about the role of formate dehydrogenase in living systems. Achievements in creation of highly effi cient catalysts based on FDH for classic biotechnology as well as for new areas are also considered. The importance of appropriate choice of the initial FDH for the creation of a biocatalyst with the required and prescribed properties with minimal costs is shown. The prospects for the use of FDH for the fixation of CO2 are discussed.