论\(\mathbb {Z}\) -范畴的k理论

Pub Date : 2023-11-04 DOI:10.1007/s40062-023-00333-2
Eugenia Ellis, Rafael Parra
{"title":"论\\(\\mathbb {Z}\\) -范畴的k理论","authors":"Eugenia Ellis,&nbsp;Rafael Parra","doi":"10.1007/s40062-023-00333-2","DOIUrl":null,"url":null,"abstract":"<div><p>We establish connections between the concepts of Noetherian, regular coherent, and regular <i>n</i>-coherent categories for <span>\\(\\mathbb {Z}\\)</span>-linear categories with finitely many objects and the corresponding notions for unital rings. These connections enable us to obtain a negative <i>K</i>-theory vanishing result, a fundamental theorem, and a homotopy invariance result for the <i>K</i>-theory of <span>\\(\\mathbb {Z}\\)</span>-linear categories.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the K-theory of \\\\(\\\\mathbb {Z}\\\\)-categories\",\"authors\":\"Eugenia Ellis,&nbsp;Rafael Parra\",\"doi\":\"10.1007/s40062-023-00333-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish connections between the concepts of Noetherian, regular coherent, and regular <i>n</i>-coherent categories for <span>\\\\(\\\\mathbb {Z}\\\\)</span>-linear categories with finitely many objects and the corresponding notions for unital rings. These connections enable us to obtain a negative <i>K</i>-theory vanishing result, a fundamental theorem, and a homotopy invariance result for the <i>K</i>-theory of <span>\\\\(\\\\mathbb {Z}\\\\)</span>-linear categories.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-023-00333-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-023-00333-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了\(\mathbb {Z}\)有限多对象线性范畴的Noetherian、正则相干和正则n相干范畴的概念与单位环的相应概念之间的联系。这些联系使我们得到了\(\mathbb {Z}\) -线性范畴的k -理论的一个负k -理论消失结果、一个基本定理和一个同伦不变性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the K-theory of \(\mathbb {Z}\)-categories

We establish connections between the concepts of Noetherian, regular coherent, and regular n-coherent categories for \(\mathbb {Z}\)-linear categories with finitely many objects and the corresponding notions for unital rings. These connections enable us to obtain a negative K-theory vanishing result, a fundamental theorem, and a homotopy invariance result for the K-theory of \(\mathbb {Z}\)-linear categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信