页岩孔隙分形特征及其对渗透率的影响

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Qian Zhang, Yanhui Dong, Shaoqing Tong
{"title":"页岩孔隙分形特征及其对渗透率的影响","authors":"Qian Zhang, Yanhui Dong, Shaoqing Tong","doi":"10.3390/fractalfract7110803","DOIUrl":null,"url":null,"abstract":"Pore structure features govern the capacity of gas storage and migration in shales and are highly dependent on the types of pores, i.e., interparticle (InterP) pores, intraparticle (IntraP) pores and organic matter (OM)-hosted pores. However, fractal features in terms of pore types and their respective contributions to permeability have been rarely addressed. On the basis of high-resolution imaging, fractal dimensions (Ds) have been determined from both pore size distributions and digital rock to quantify the heterogeneity in pore morphology and spatial textures. Overall, OM-hosted pores are smaller in size and more abundant in quantity, corresponding to a relatively high D, while IntraP pores are mainly isolated and scarce, translating into lower D values. Additionally, crack-like InterP pores with a moderate level of porosity and the D can play a pivotal role in shale seepage potential. A comparison of the estimated permeability among different pore types highlights that the contribution of interconnected OM pores to the overall permeability remains constrained unless they can link neighboring pore clusters, as commonly observed in organo-clay composites. Furthermore, the pore morphology and fractal features of shale rocks can exhibit noteworthy variations subjected to sedimentology, mineralogy, diagenesis and OM maturation.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"39 16","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-Type-Dependent Fractal Features of Shales and Implications on Permeability\",\"authors\":\"Qian Zhang, Yanhui Dong, Shaoqing Tong\",\"doi\":\"10.3390/fractalfract7110803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pore structure features govern the capacity of gas storage and migration in shales and are highly dependent on the types of pores, i.e., interparticle (InterP) pores, intraparticle (IntraP) pores and organic matter (OM)-hosted pores. However, fractal features in terms of pore types and their respective contributions to permeability have been rarely addressed. On the basis of high-resolution imaging, fractal dimensions (Ds) have been determined from both pore size distributions and digital rock to quantify the heterogeneity in pore morphology and spatial textures. Overall, OM-hosted pores are smaller in size and more abundant in quantity, corresponding to a relatively high D, while IntraP pores are mainly isolated and scarce, translating into lower D values. Additionally, crack-like InterP pores with a moderate level of porosity and the D can play a pivotal role in shale seepage potential. A comparison of the estimated permeability among different pore types highlights that the contribution of interconnected OM pores to the overall permeability remains constrained unless they can link neighboring pore clusters, as commonly observed in organo-clay composites. Furthermore, the pore morphology and fractal features of shale rocks can exhibit noteworthy variations subjected to sedimentology, mineralogy, diagenesis and OM maturation.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"39 16\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7110803\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110803","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

孔隙结构特征决定着页岩的储气能力和运移能力,并且高度依赖于孔隙类型,即颗粒间孔隙(InterP)、颗粒内孔隙(IntraP)和有机质孔隙(OM)。然而,分形特征在孔隙类型及其对渗透率的贡献方面的研究却很少。在高分辨率成像的基础上,从孔隙大小分布和数字岩石中确定了分形维数(Ds),以量化孔隙形态和空间结构的非均质性。总体而言,om型孔隙体积较小,数量较多,对应的D值较高,而IntraP型孔隙主要是孤立的、稀缺的,对应的D值较低。具有中等孔隙度和D值的裂缝状InterP孔隙在页岩渗流潜力中起着关键作用。通过对不同孔隙类型的渗透率进行比较,我们发现相互连接的OM孔隙对整体渗透率的贡献仍然有限,除非它们能够连接相邻的孔隙簇,这在有机粘土复合材料中很常见。此外,页岩孔隙形态和分形特征在沉积学、矿物学、成岩作用和有机质成熟过程中表现出明显的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pore-Type-Dependent Fractal Features of Shales and Implications on Permeability
Pore structure features govern the capacity of gas storage and migration in shales and are highly dependent on the types of pores, i.e., interparticle (InterP) pores, intraparticle (IntraP) pores and organic matter (OM)-hosted pores. However, fractal features in terms of pore types and their respective contributions to permeability have been rarely addressed. On the basis of high-resolution imaging, fractal dimensions (Ds) have been determined from both pore size distributions and digital rock to quantify the heterogeneity in pore morphology and spatial textures. Overall, OM-hosted pores are smaller in size and more abundant in quantity, corresponding to a relatively high D, while IntraP pores are mainly isolated and scarce, translating into lower D values. Additionally, crack-like InterP pores with a moderate level of porosity and the D can play a pivotal role in shale seepage potential. A comparison of the estimated permeability among different pore types highlights that the contribution of interconnected OM pores to the overall permeability remains constrained unless they can link neighboring pore clusters, as commonly observed in organo-clay composites. Furthermore, the pore morphology and fractal features of shale rocks can exhibit noteworthy variations subjected to sedimentology, mineralogy, diagenesis and OM maturation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信