改进了唯一最短向量问题复杂度的下界

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Baolong Jin, Rui Xue
{"title":"改进了唯一最短向量问题复杂度的下界","authors":"Baolong Jin, Rui Xue","doi":"10.1186/s42400-023-00173-w","DOIUrl":null,"url":null,"abstract":"Abstract Unique shortest vector problem (uSVP) plays an important role in lattice based cryptography. Many cryptographic schemes based their security on it. For the cofidence of those applications, it is essential to clarify the complexity of uSVP with different parameters. However, proving the NP-hardness of uSVP appears quite hard. To the state of the art, we are even not able to prove the NP-hardness of uSVP with constant parameters. In this work, we gave a lower bound for the hardness of uSVP with constant parameters, i.e. we proved that uSVP is at least as hard as gap shortest vector problem (GapSVP) with gap of $$O(\\sqrt{n/\\log (n)})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>/</mml:mo> <mml:mo>log</mml:mo> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , which is in $$NP \\cap coAM$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>N</mml:mi> <mml:mi>P</mml:mi> <mml:mo>∩</mml:mo> <mml:mi>c</mml:mi> <mml:mi>o</mml:mi> <mml:mi>A</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> . Unlike previous works, our reduction works for paramters in a bigger range, especially when the constant hidden by the big- O in GapSVP is smaller than 1. Graphical abstract","PeriodicalId":36402,"journal":{"name":"Cybersecurity","volume":"42 2","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved lower bound for the complexity of unique shortest vector problem\",\"authors\":\"Baolong Jin, Rui Xue\",\"doi\":\"10.1186/s42400-023-00173-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Unique shortest vector problem (uSVP) plays an important role in lattice based cryptography. Many cryptographic schemes based their security on it. For the cofidence of those applications, it is essential to clarify the complexity of uSVP with different parameters. However, proving the NP-hardness of uSVP appears quite hard. To the state of the art, we are even not able to prove the NP-hardness of uSVP with constant parameters. In this work, we gave a lower bound for the hardness of uSVP with constant parameters, i.e. we proved that uSVP is at least as hard as gap shortest vector problem (GapSVP) with gap of $$O(\\\\sqrt{n/\\\\log (n)})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>/</mml:mo> <mml:mo>log</mml:mo> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , which is in $$NP \\\\cap coAM$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>N</mml:mi> <mml:mi>P</mml:mi> <mml:mo>∩</mml:mo> <mml:mi>c</mml:mi> <mml:mi>o</mml:mi> <mml:mi>A</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> . Unlike previous works, our reduction works for paramters in a bigger range, especially when the constant hidden by the big- O in GapSVP is smaller than 1. Graphical abstract\",\"PeriodicalId\":36402,\"journal\":{\"name\":\"Cybersecurity\",\"volume\":\"42 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42400-023-00173-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42400-023-00173-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

唯一最短向量问题(uSVP)在基于格的密码学中占有重要地位。许多加密方案的安全性都基于它。为了这些应用的可信度,有必要澄清使用不同参数的uSVP的复杂性。然而,证明uSVP的np硬度似乎相当困难。就目前的技术水平而言,我们甚至无法证明恒定参数下uSVP的np硬度。在这项工作中,我们给出了恒定参数下uSVP的硬度下界,即我们证明了uSVP至少与gap为$$O(\sqrt{n/\log (n)})$$ O (n / log (n))的gap最短向量问题(GapSVP)一样难,即$$NP \cap coAM$$ n P∩c O a M。与以往的工作不同,我们的约简适用于更大范围的参数,特别是当GapSVP中大O隐藏的常数小于1时。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved lower bound for the complexity of unique shortest vector problem

Improved lower bound for the complexity of unique shortest vector problem
Abstract Unique shortest vector problem (uSVP) plays an important role in lattice based cryptography. Many cryptographic schemes based their security on it. For the cofidence of those applications, it is essential to clarify the complexity of uSVP with different parameters. However, proving the NP-hardness of uSVP appears quite hard. To the state of the art, we are even not able to prove the NP-hardness of uSVP with constant parameters. In this work, we gave a lower bound for the hardness of uSVP with constant parameters, i.e. we proved that uSVP is at least as hard as gap shortest vector problem (GapSVP) with gap of $$O(\sqrt{n/\log (n)})$$ O ( n / log ( n ) ) , which is in $$NP \cap coAM$$ N P c o A M . Unlike previous works, our reduction works for paramters in a bigger range, especially when the constant hidden by the big- O in GapSVP is smaller than 1. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybersecurity
Cybersecurity Computer Science-Information Systems
CiteScore
7.30
自引率
0.00%
发文量
77
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信