二维Toda格结构的对角tau函数,连通$(n,m)$-点函数和双Hurwitz数

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Zhiyuan Wang, Chenglang Yang
{"title":"二维Toda格结构的对角tau函数,连通$(n,m)$-点函数和双Hurwitz数","authors":"Zhiyuan Wang, Chenglang Yang","doi":"10.3842/sigma.2023.085","DOIUrl":null,"url":null,"abstract":"We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\\tau_f(\\boldsymbol{t}^+,\\boldsymbol{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\\boldsymbol{t}^-$, we compute the KP-affine coordinates of $\\tau_f(\\boldsymbol{t}^+,\\boldsymbol{t}^-)$. As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov-Witten invariants of $\\mathbb P^1$ relative to two points.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"24 4","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers\",\"authors\":\"Zhiyuan Wang, Chenglang Yang\",\"doi\":\"10.3842/sigma.2023.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\\\\tau_f(\\\\boldsymbol{t}^+,\\\\boldsymbol{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\\\\boldsymbol{t}^-$, we compute the KP-affine coordinates of $\\\\tau_f(\\\\boldsymbol{t}^+,\\\\boldsymbol{t}^-)$. As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov-Witten invariants of $\\\\mathbb P^1$ relative to two points.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"24 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.085\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.085","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

利用费米子计算和玻色子-费米子对应关系,导出了二维Toda晶格层中任意对角线函数$\tau_f(\boldsymbol{t} +,\boldsymbol{t}^-)$所关联的$(n,m)$-点函数的显式公式。然后对于固定的$\boldsymbol{t}^-$,我们计算$\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$的kp仿射坐标。作为应用,我们给出了一种统一的方法来计算各种类型的连通双Hurwitz数,包括普通双Hurwitz数、完整$r$-环的双Hurwitz数和混合双Hurwitz数。我们还将这种方法应用于计算$\mathbb P^1$相对于两点的平稳Gromov-Witten不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers
We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\boldsymbol{t}^-$, we compute the KP-affine coordinates of $\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$. As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov-Witten invariants of $\mathbb P^1$ relative to two points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信