Aswath Govindraju, Andrew Cornelius, Zongxuan Sun, Kenneth Kim, Chol-Bum M. Kweon
{"title":"多燃料无人机发动机的限速节能前馈控制","authors":"Aswath Govindraju, Andrew Cornelius, Zongxuan Sun, Kenneth Kim, Chol-Bum M. Kweon","doi":"10.1115/1.4063476","DOIUrl":null,"url":null,"abstract":"Abstract Surrogate-model or data-driven model-based control frameworks are becoming increasingly popular in recent years due to their ease of model development and enhanced computational power, making them suitable for real-time use. However, when it comes to modeling aspects related to time, difficulties arise as many of the models deal with quasi-static systems. In this paper, we propose a method to model time-dependent actuator constraints in a surrogate-model-based control framework for controlling the combustion phasing in a multi-fuel UAS engine. Along with this, a conducive method for designing an energy-efficient ignition assistant control is discussed. The developed methods are then tested on a diesel engine, and the results show a more robust and energy-efficient combustion phasing control as the fuel property varies in real-time.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"479 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rate Limited and Energy efficient Feedforward control for multi-fuel UAS engine\",\"authors\":\"Aswath Govindraju, Andrew Cornelius, Zongxuan Sun, Kenneth Kim, Chol-Bum M. Kweon\",\"doi\":\"10.1115/1.4063476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surrogate-model or data-driven model-based control frameworks are becoming increasingly popular in recent years due to their ease of model development and enhanced computational power, making them suitable for real-time use. However, when it comes to modeling aspects related to time, difficulties arise as many of the models deal with quasi-static systems. In this paper, we propose a method to model time-dependent actuator constraints in a surrogate-model-based control framework for controlling the combustion phasing in a multi-fuel UAS engine. Along with this, a conducive method for designing an energy-efficient ignition assistant control is discussed. The developed methods are then tested on a diesel engine, and the results show a more robust and energy-efficient combustion phasing control as the fuel property varies in real-time.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"479 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate Limited and Energy efficient Feedforward control for multi-fuel UAS engine
Abstract Surrogate-model or data-driven model-based control frameworks are becoming increasingly popular in recent years due to their ease of model development and enhanced computational power, making them suitable for real-time use. However, when it comes to modeling aspects related to time, difficulties arise as many of the models deal with quasi-static systems. In this paper, we propose a method to model time-dependent actuator constraints in a surrogate-model-based control framework for controlling the combustion phasing in a multi-fuel UAS engine. Along with this, a conducive method for designing an energy-efficient ignition assistant control is discussed. The developed methods are then tested on a diesel engine, and the results show a more robust and energy-efficient combustion phasing control as the fuel property varies in real-time.