Hongyu Chen, Konrad Kosiba, C. Suryanarayana, Tiwen Lu, Yang Liu, Yonggang Wang, Konda Gokuldoss Prashanth
{"title":"激光增材制造钢基复合材料的原料制备、显微组织和力学性能","authors":"Hongyu Chen, Konrad Kosiba, C. Suryanarayana, Tiwen Lu, Yang Liu, Yonggang Wang, Konda Gokuldoss Prashanth","doi":"10.1080/09506608.2023.2258664","DOIUrl":null,"url":null,"abstract":"Laser-based additive manufacturing (LBAM) has shown great potential in the development of new metallic materials, especially in the design and fabrication of metal matrix composites (MMCs). Steel matrix composites (SMCs) as one MMC-type, have been successfully additively manufactured with full density and good performance. This article reviews emerging studies of LBAM-fabricated SMCs, starting from the methods of feedstock preparation including respective merits and challenges. The mechanisms of phase transformation, grain growth and texture development of the steel matrix, as well as the precipitation of reinforcements during rapid solidification inherent to LBAM are demonstrated. Microstructural features of SMCs with different matrix (austenitic, martensitic, duplex and ferritic) and reinforcement types are discussed. The interrelationship between the composition and physical properties of the composite powder, microstructures and mechanical properties of SMCs are disclosed and the involved strengthening mechanisms are discussed. Lastly, conclusions and outlook focusing on emerging trends of LBAM-fabricated SMCs are presented.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"8 1","pages":"0"},"PeriodicalIF":16.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites\",\"authors\":\"Hongyu Chen, Konrad Kosiba, C. Suryanarayana, Tiwen Lu, Yang Liu, Yonggang Wang, Konda Gokuldoss Prashanth\",\"doi\":\"10.1080/09506608.2023.2258664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-based additive manufacturing (LBAM) has shown great potential in the development of new metallic materials, especially in the design and fabrication of metal matrix composites (MMCs). Steel matrix composites (SMCs) as one MMC-type, have been successfully additively manufactured with full density and good performance. This article reviews emerging studies of LBAM-fabricated SMCs, starting from the methods of feedstock preparation including respective merits and challenges. The mechanisms of phase transformation, grain growth and texture development of the steel matrix, as well as the precipitation of reinforcements during rapid solidification inherent to LBAM are demonstrated. Microstructural features of SMCs with different matrix (austenitic, martensitic, duplex and ferritic) and reinforcement types are discussed. The interrelationship between the composition and physical properties of the composite powder, microstructures and mechanical properties of SMCs are disclosed and the involved strengthening mechanisms are discussed. Lastly, conclusions and outlook focusing on emerging trends of LBAM-fabricated SMCs are presented.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2023.2258664\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09506608.2023.2258664","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites
Laser-based additive manufacturing (LBAM) has shown great potential in the development of new metallic materials, especially in the design and fabrication of metal matrix composites (MMCs). Steel matrix composites (SMCs) as one MMC-type, have been successfully additively manufactured with full density and good performance. This article reviews emerging studies of LBAM-fabricated SMCs, starting from the methods of feedstock preparation including respective merits and challenges. The mechanisms of phase transformation, grain growth and texture development of the steel matrix, as well as the precipitation of reinforcements during rapid solidification inherent to LBAM are demonstrated. Microstructural features of SMCs with different matrix (austenitic, martensitic, duplex and ferritic) and reinforcement types are discussed. The interrelationship between the composition and physical properties of the composite powder, microstructures and mechanical properties of SMCs are disclosed and the involved strengthening mechanisms are discussed. Lastly, conclusions and outlook focusing on emerging trends of LBAM-fabricated SMCs are presented.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.