允许良好极小模型的光滑变种族的双分几何

IF 0.5 Q3 MATHEMATICS
Behrouz Taji
{"title":"允许良好极小模型的光滑变种族的双分几何","authors":"Behrouz Taji","doi":"10.1007/s40879-023-00681-6","DOIUrl":null,"url":null,"abstract":"Abstract We study families of projective manifolds with good minimal models. After constructing a suitable moduli functor for polarized varieties with canonical singularities, we show that, if not birationally isotrivial, the base spaces of such families support subsheaves of log-pluridifferentials with positive Kodaira dimension. Consequently we prove that, over special base schemes, families of this type can only be birationally isotrivial and, as a result, confirm a conjecture of Kebekus and Kovács.","PeriodicalId":44725,"journal":{"name":"European Journal of Mathematics","volume":"22 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Birational geometry of smooth families of varieties admitting good minimal models\",\"authors\":\"Behrouz Taji\",\"doi\":\"10.1007/s40879-023-00681-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study families of projective manifolds with good minimal models. After constructing a suitable moduli functor for polarized varieties with canonical singularities, we show that, if not birationally isotrivial, the base spaces of such families support subsheaves of log-pluridifferentials with positive Kodaira dimension. Consequently we prove that, over special base schemes, families of this type can only be birationally isotrivial and, as a result, confirm a conjecture of Kebekus and Kovács.\",\"PeriodicalId\":44725,\"journal\":{\"name\":\"European Journal of Mathematics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40879-023-00681-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40879-023-00681-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

摘要研究具有良好极小模型的射影流形族。在构造了具有正则奇点的极化变体的合适模函子后,证明了该类族的基空间支持具有正Kodaira维数的对数多微分子束,如果不是双等平凡的。因此,我们证明了在特殊的基格式下,这种类型的族只能是双等平凡的,从而证实了Kebekus和Kovács的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Birational geometry of smooth families of varieties admitting good minimal models
Abstract We study families of projective manifolds with good minimal models. After constructing a suitable moduli functor for polarized varieties with canonical singularities, we show that, if not birationally isotrivial, the base spaces of such families support subsheaves of log-pluridifferentials with positive Kodaira dimension. Consequently we prove that, over special base schemes, families of this type can only be birationally isotrivial and, as a result, confirm a conjecture of Kebekus and Kovács.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
78
期刊介绍: The European Journal of Mathematics (EJM) is an international journal that publishes research papers in all fields of mathematics. It also publishes research-survey papers intended to provide nonspecialists with insight into topics of current research in different areas of mathematics. The journal invites authors from all over the world. All contributions are required to meet high standards of quality and originality. EJM has an international editorial board. Coverage in EJM will include: - Algebra - Complex Analysis - Differential Equations - Discrete Mathematics - Functional Analysis - Geometry and Topology - Mathematical Logic and Foundations - Number Theory - Numerical Analysis and Optimization - Probability and Statistics - Real Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信