{"title":"一种解决自动驾驶图像数据中语义冗余和偏差的采样方法:在NIA AI Hub数据集上的应用及注释成本降低估计","authors":"Yoonsik Shin, Miyeon Jeong, Jungwoo Lee","doi":"10.5626/ktcp.2023.29.10.451","DOIUrl":null,"url":null,"abstract":"자율주행 분야의 딥 러닝 모델 훈련을 위한 대규모 이미지 데이터셋 구축과 어노테이션은 많은 자원을 필요로 한다. 이 연구는 데이터셋에서 발견되는 중복과 편향이 야기하는 자원투입의 비효율성을 해결하기 위해 Mini-Batch K-Means와 군집별 균등 샘플링을 결합한 새로운 데이터 샘플링 방법을 제안한다. 이 방법은 한국지능정보사회진흥원 AI Hub의 차량 및 사람 인지 데이터셋에 적용하며, YOLOv5 모델로 학습 후 일반화 성능평가를 진행한다. 실험 결과, 샘플링된 데이터셋을 사용한 모델이 더 나은 성능을 보이며, 이에 따른 어노테이션 비용도 75∼90% 절감될 것으로 추정된다. 제안한 샘플링 방법은 심플랜덤 샘플링, 체계적 샘플링, 클러스터링 샘플링과 비교하였을 때도 우수한 성능을 보인다. 이 결과는 효율적인 데이터셋 구축 전략과 데이터 샘플링 방법을 개발하는 중요한 방향성을 시사한다.","PeriodicalId":479646,"journal":{"name":"Jeongbogwahakoe keompyuting-ui silje nonmunji","volume":"36 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sampling Method for Resolving Semantic Redundancy and Bias in Autonomous Driving Image Datasets: Application to NIA AI Hub Dataset and Estimation of Annotation Cost Reduction\",\"authors\":\"Yoonsik Shin, Miyeon Jeong, Jungwoo Lee\",\"doi\":\"10.5626/ktcp.2023.29.10.451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"자율주행 분야의 딥 러닝 모델 훈련을 위한 대규모 이미지 데이터셋 구축과 어노테이션은 많은 자원을 필요로 한다. 이 연구는 데이터셋에서 발견되는 중복과 편향이 야기하는 자원투입의 비효율성을 해결하기 위해 Mini-Batch K-Means와 군집별 균등 샘플링을 결합한 새로운 데이터 샘플링 방법을 제안한다. 이 방법은 한국지능정보사회진흥원 AI Hub의 차량 및 사람 인지 데이터셋에 적용하며, YOLOv5 모델로 학습 후 일반화 성능평가를 진행한다. 실험 결과, 샘플링된 데이터셋을 사용한 모델이 더 나은 성능을 보이며, 이에 따른 어노테이션 비용도 75∼90% 절감될 것으로 추정된다. 제안한 샘플링 방법은 심플랜덤 샘플링, 체계적 샘플링, 클러스터링 샘플링과 비교하였을 때도 우수한 성능을 보인다. 이 결과는 효율적인 데이터셋 구축 전략과 데이터 샘플링 방법을 개발하는 중요한 방향성을 시사한다.\",\"PeriodicalId\":479646,\"journal\":{\"name\":\"Jeongbogwahakoe keompyuting-ui silje nonmunji\",\"volume\":\"36 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jeongbogwahakoe keompyuting-ui silje nonmunji\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5626/ktcp.2023.29.10.451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jeongbogwahakoe keompyuting-ui silje nonmunji","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5626/ktcp.2023.29.10.451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sampling Method for Resolving Semantic Redundancy and Bias in Autonomous Driving Image Datasets: Application to NIA AI Hub Dataset and Estimation of Annotation Cost Reduction
자율주행 분야의 딥 러닝 모델 훈련을 위한 대규모 이미지 데이터셋 구축과 어노테이션은 많은 자원을 필요로 한다. 이 연구는 데이터셋에서 발견되는 중복과 편향이 야기하는 자원투입의 비효율성을 해결하기 위해 Mini-Batch K-Means와 군집별 균등 샘플링을 결합한 새로운 데이터 샘플링 방법을 제안한다. 이 방법은 한국지능정보사회진흥원 AI Hub의 차량 및 사람 인지 데이터셋에 적용하며, YOLOv5 모델로 학습 후 일반화 성능평가를 진행한다. 실험 결과, 샘플링된 데이터셋을 사용한 모델이 더 나은 성능을 보이며, 이에 따른 어노테이션 비용도 75∼90% 절감될 것으로 추정된다. 제안한 샘플링 방법은 심플랜덤 샘플링, 체계적 샘플링, 클러스터링 샘플링과 비교하였을 때도 우수한 성능을 보인다. 이 결과는 효율적인 데이터셋 구축 전략과 데이터 샘플링 방법을 개발하는 중요한 방향성을 시사한다.