{"title":"一类A3MDS代码的分类及其在秘密共享方案中的应用","authors":"Bandana Pandey, Prabal Paul","doi":"10.1142/s1793830923500842","DOIUrl":null,"url":null,"abstract":"A [Formula: see text]-ary linear [Formula: see text] code [Formula: see text] is known as [Formula: see text] code. If [Formula: see text] the code is called a maximum distance separable code. [Formula: see text] codes are known to be useful in the secret-sharing schemes and coding theory. In this paper, we classify all binary self-orthogonal [Formula: see text] codes. We have introduced a subclass of [Formula: see text] codes, called [Formula: see text] codes, to form a special type of secret-sharing scheme where for any participant, there exist [Formula: see text] other participants who can collectively reveal the secret by combining their shares and there exists another set of [Formula: see text] participants including the given participant, who cannot reveal the secret.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"78 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of a Class of <i>A</i><sup>3</sup><i>MDS</i> Code and Applications in Secret-Sharing Schemes\",\"authors\":\"Bandana Pandey, Prabal Paul\",\"doi\":\"10.1142/s1793830923500842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A [Formula: see text]-ary linear [Formula: see text] code [Formula: see text] is known as [Formula: see text] code. If [Formula: see text] the code is called a maximum distance separable code. [Formula: see text] codes are known to be useful in the secret-sharing schemes and coding theory. In this paper, we classify all binary self-orthogonal [Formula: see text] codes. We have introduced a subclass of [Formula: see text] codes, called [Formula: see text] codes, to form a special type of secret-sharing scheme where for any participant, there exist [Formula: see text] other participants who can collectively reveal the secret by combining their shares and there exists another set of [Formula: see text] participants including the given participant, who cannot reveal the secret.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Classification of a Class of A3MDS Code and Applications in Secret-Sharing Schemes
A [Formula: see text]-ary linear [Formula: see text] code [Formula: see text] is known as [Formula: see text] code. If [Formula: see text] the code is called a maximum distance separable code. [Formula: see text] codes are known to be useful in the secret-sharing schemes and coding theory. In this paper, we classify all binary self-orthogonal [Formula: see text] codes. We have introduced a subclass of [Formula: see text] codes, called [Formula: see text] codes, to form a special type of secret-sharing scheme where for any participant, there exist [Formula: see text] other participants who can collectively reveal the secret by combining their shares and there exists another set of [Formula: see text] participants including the given participant, who cannot reveal the secret.