交换环理想的零图的度量维数

IF 0.6 Q4 MATHEMATICS, APPLIED
K. Selvakumar, N. Petchiammal
{"title":"交换环理想的零图的度量维数","authors":"K. Selvakumar, N. Petchiammal","doi":"10.1142/s1793830923500787","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the ideal of all nilpotent elements of [Formula: see text]. Let [Formula: see text] be a nontrivial ideal of [Formula: see text] and there exists a nontrivial ideal [Formula: see text] such that [Formula: see text] The nil-graph of ideals of [Formula: see text] is defined as the graph [Formula: see text] whose vertex set is the set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. A subset of vertices [Formula: see text] resolves a graph [Formula: see text] and [Formula: see text] is a resolving set of [Formula: see text] if every vertex is uniquely determined by its vector of distances to the vertices of [Formula: see text] In particular, for an ordered subset [Formula: see text] of vertices in a connected graph [Formula: see text] and a vertex [Formula: see text] of [Formula: see text] the metric representation of [Formula: see text] with respect to [Formula: see text] is the [Formula: see text]-vector [Formula: see text] The set [Formula: see text] is a resolving set for [Formula: see text] if [Formula: see text] implies that [Formula: see text] for all pair of vertices, [Formula: see text] A resolving set [Formula: see text] of minimum cardinality is the metric basis for [Formula: see text] and the number of elements in the resolving set of minimum cardinality is the metric dimension of [Formula: see text] If [Formula: see text] for every pair [Formula: see text] of adjacent vertices of [Formula: see text] then [Formula: see text] is called a local metric set of [Formula: see text]. The minimum [Formula: see text] for which [Formula: see text] has a local metric [Formula: see text]-set is the local metric dimension of [Formula: see text] which is denoted by [Formula: see text]. In this paper, we determine metric dimension and local metric dimension of nil-graph of ideals of commutative rings.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"73 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Metric Dimension of Nil-Graph of Ideals of Commutative Rings\",\"authors\":\"K. Selvakumar, N. Petchiammal\",\"doi\":\"10.1142/s1793830923500787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the ideal of all nilpotent elements of [Formula: see text]. Let [Formula: see text] be a nontrivial ideal of [Formula: see text] and there exists a nontrivial ideal [Formula: see text] such that [Formula: see text] The nil-graph of ideals of [Formula: see text] is defined as the graph [Formula: see text] whose vertex set is the set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. A subset of vertices [Formula: see text] resolves a graph [Formula: see text] and [Formula: see text] is a resolving set of [Formula: see text] if every vertex is uniquely determined by its vector of distances to the vertices of [Formula: see text] In particular, for an ordered subset [Formula: see text] of vertices in a connected graph [Formula: see text] and a vertex [Formula: see text] of [Formula: see text] the metric representation of [Formula: see text] with respect to [Formula: see text] is the [Formula: see text]-vector [Formula: see text] The set [Formula: see text] is a resolving set for [Formula: see text] if [Formula: see text] implies that [Formula: see text] for all pair of vertices, [Formula: see text] A resolving set [Formula: see text] of minimum cardinality is the metric basis for [Formula: see text] and the number of elements in the resolving set of minimum cardinality is the metric dimension of [Formula: see text] If [Formula: see text] for every pair [Formula: see text] of adjacent vertices of [Formula: see text] then [Formula: see text] is called a local metric set of [Formula: see text]. The minimum [Formula: see text] for which [Formula: see text] has a local metric [Formula: see text]-set is the local metric dimension of [Formula: see text] which is denoted by [Formula: see text]. In this paper, we determine metric dimension and local metric dimension of nil-graph of ideals of commutative rings.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个具有恒等的交换环,[公式:见文]是[公式:见文]中所有幂零元素的理想。设[公式:见文]是[公式:见文]的一个非平凡理想[公式:见文],则存在一个非平凡理想[公式:见文]使得[公式:见文]的理想的零图定义为顶点集为[公式:见文]的图[公式:见文],且两个不同的顶点[公式:见文]和[公式:见文]相邻当且仅当[公式:见文]。顶点的一个子集(公式:看到文本)解析公式:看到文本和图表(公式:看到文本)是一套解决[公式:看到文本]如果每个顶点是唯一确定的向量距离的顶点(公式:看到文本),特别是对有序子集(公式:看到文本)的顶点连通图(公式:看到文本)和一个顶点的公式:看到文本(公式:看到文本)的度量表示[公式:看到文本]对[公式:[公式:见文本]是[公式:见文本]-向量[公式:见文本]集合[公式:见文本]是[公式:见文本]的解析集,如果[公式:见文本]意味着[公式:见文本]对于所有顶点对,[公式:见文本]最小基数的解析集[公式:见文本]是[公式:见文本]的度量基础,最小基数的解析集中的元素数量是[公式:见文本]的度量维度,如果[公式:见文本]对于[公式:见文]的相邻顶点的每一对[公式:见文],则[公式:见文]称为[公式:见文]的局部度量集。对于[公式:见文]具有一个局部度量[公式:见文]的最小值[公式:见文]-set是[公式:见文]的局部度量维数,用[公式:见文]表示。本文确定了交换环理想的零图的度量维数和局部度量维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Metric Dimension of Nil-Graph of Ideals of Commutative Rings
Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the ideal of all nilpotent elements of [Formula: see text]. Let [Formula: see text] be a nontrivial ideal of [Formula: see text] and there exists a nontrivial ideal [Formula: see text] such that [Formula: see text] The nil-graph of ideals of [Formula: see text] is defined as the graph [Formula: see text] whose vertex set is the set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. A subset of vertices [Formula: see text] resolves a graph [Formula: see text] and [Formula: see text] is a resolving set of [Formula: see text] if every vertex is uniquely determined by its vector of distances to the vertices of [Formula: see text] In particular, for an ordered subset [Formula: see text] of vertices in a connected graph [Formula: see text] and a vertex [Formula: see text] of [Formula: see text] the metric representation of [Formula: see text] with respect to [Formula: see text] is the [Formula: see text]-vector [Formula: see text] The set [Formula: see text] is a resolving set for [Formula: see text] if [Formula: see text] implies that [Formula: see text] for all pair of vertices, [Formula: see text] A resolving set [Formula: see text] of minimum cardinality is the metric basis for [Formula: see text] and the number of elements in the resolving set of minimum cardinality is the metric dimension of [Formula: see text] If [Formula: see text] for every pair [Formula: see text] of adjacent vertices of [Formula: see text] then [Formula: see text] is called a local metric set of [Formula: see text]. The minimum [Formula: see text] for which [Formula: see text] has a local metric [Formula: see text]-set is the local metric dimension of [Formula: see text] which is denoted by [Formula: see text]. In this paper, we determine metric dimension and local metric dimension of nil-graph of ideals of commutative rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信