发酵生物废弃物对高锰酸盐的生物吸附机理

IF 2.8 4区 工程技术 Q2 CHEMISTRY, APPLIED
Namgyu Kim, Sang-Hoon Lee, Hanui Yang, Donghee Park
{"title":"发酵生物废弃物对高锰酸盐的生物吸附机理","authors":"Namgyu Kim, Sang-Hoon Lee, Hanui Yang, Donghee Park","doi":"10.1155/2023/4759123","DOIUrl":null,"url":null,"abstract":"Biosorptive treatment of industrial wastewater contaminated with heavy metals has been recognized as one of the most effective green tools, competing with traditional physical/chemical treatment processes. This study delves into the detailed investigation of the biosorbent prepared from fermentation biowaste, particularly focusing on the mechanism behind permanganate (Mn(VII)) removal. Various parameters including pH, biosorbent dosage, initial concentration, and temperature were examined. Among these factors, solution pH emerged as the most crucial in removing Mn(VII) using the biosorbent. The significant removal of Mn(VII) was attributed to both reduction and adsorption, as confirmed by X-ray photoelectron spectroscopy. Depending on the experimental conditions, the removal of Mn(VII) was influenced not only by simple adsorption but also by oxidation-reduction and precipitation processes. This study not only advances our understanding of biosorptive treatment but also highlights the promising potential of fermentation biowaste-based biosorbents for effective Mn(VII) removal.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":"86 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Permanganate Biosorption by Fermentation Biowaste\",\"authors\":\"Namgyu Kim, Sang-Hoon Lee, Hanui Yang, Donghee Park\",\"doi\":\"10.1155/2023/4759123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biosorptive treatment of industrial wastewater contaminated with heavy metals has been recognized as one of the most effective green tools, competing with traditional physical/chemical treatment processes. This study delves into the detailed investigation of the biosorbent prepared from fermentation biowaste, particularly focusing on the mechanism behind permanganate (Mn(VII)) removal. Various parameters including pH, biosorbent dosage, initial concentration, and temperature were examined. Among these factors, solution pH emerged as the most crucial in removing Mn(VII) using the biosorbent. The significant removal of Mn(VII) was attributed to both reduction and adsorption, as confirmed by X-ray photoelectron spectroscopy. Depending on the experimental conditions, the removal of Mn(VII) was influenced not only by simple adsorption but also by oxidation-reduction and precipitation processes. This study not only advances our understanding of biosorptive treatment but also highlights the promising potential of fermentation biowaste-based biosorbents for effective Mn(VII) removal.\",\"PeriodicalId\":7315,\"journal\":{\"name\":\"Adsorption Science & Technology\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4759123\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4759123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

生物吸附法处理重金属污染的工业废水已被公认为是与传统的物理/化学处理方法相竞争的最有效的绿色工具之一。本研究对发酵生物垃圾制备的生物吸附剂进行了详细的研究,重点研究了去除高锰酸盐(Mn(VII))的机理。考察了pH、生物吸附剂用量、初始浓度和温度等参数。在这些因素中,溶液pH是使用生物吸附剂去除Mn(VII)的最关键因素。通过x射线光电子能谱分析证实,锰(VII)的显著去除是由于还原和吸附作用。根据实验条件的不同,Mn(VII)的去除不仅受简单吸附的影响,还受氧化还原和沉淀过程的影响。这项研究不仅提高了我们对生物吸附处理的理解,而且突出了发酵生物废物为基础的生物吸附剂有效去除Mn(VII)的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of Permanganate Biosorption by Fermentation Biowaste
Biosorptive treatment of industrial wastewater contaminated with heavy metals has been recognized as one of the most effective green tools, competing with traditional physical/chemical treatment processes. This study delves into the detailed investigation of the biosorbent prepared from fermentation biowaste, particularly focusing on the mechanism behind permanganate (Mn(VII)) removal. Various parameters including pH, biosorbent dosage, initial concentration, and temperature were examined. Among these factors, solution pH emerged as the most crucial in removing Mn(VII) using the biosorbent. The significant removal of Mn(VII) was attributed to both reduction and adsorption, as confirmed by X-ray photoelectron spectroscopy. Depending on the experimental conditions, the removal of Mn(VII) was influenced not only by simple adsorption but also by oxidation-reduction and precipitation processes. This study not only advances our understanding of biosorptive treatment but also highlights the promising potential of fermentation biowaste-based biosorbents for effective Mn(VII) removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption Science & Technology
Adsorption Science & Technology 工程技术-工程:化工
CiteScore
5.00
自引率
10.30%
发文量
181
审稿时长
4.5 months
期刊介绍: Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信