{"title":"基于多元线性回归的财务数据质量评价方法","authors":"Meng Li, Jiqiang Liu, Yeping Yang","doi":"10.3390/fi15100338","DOIUrl":null,"url":null,"abstract":"With the rapid growth of customer data in financial institutions, such as trusts, issues of data quality have become increasingly prominent. The main challenge lies in constructing an effective evaluation method that ensures accurate and efficient assessment of customer data quality when dealing with massive customer data. In this paper, we construct a data quality evaluation index system based on the analytic hierarchy process through a comprehensive investigation of existing research on data quality. Then, redundant features are filtered based on the Shapley value, and the multiple linear regression model is employed to adjust the weight of different indices. Finally, a case study of the customer and institution information of a trust institution is conducted. The results demonstrate that the utilization of completeness, accuracy, timeliness, consistency, uniqueness, and compliance to establish a quality evaluation index system proves instrumental in conducting extensive and in-depth research on data quality measurement dimensions. Additionally, the data quality evaluation approach based on multiple linear regression facilitates the batch scoring of data, and the incorporation of the Shapley value facilitates the elimination of invalid features. This enables the intelligent evaluation of large-scale data quality for financial data.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"17 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Data Quality Evaluation Method Based on Multiple Linear Regression\",\"authors\":\"Meng Li, Jiqiang Liu, Yeping Yang\",\"doi\":\"10.3390/fi15100338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of customer data in financial institutions, such as trusts, issues of data quality have become increasingly prominent. The main challenge lies in constructing an effective evaluation method that ensures accurate and efficient assessment of customer data quality when dealing with massive customer data. In this paper, we construct a data quality evaluation index system based on the analytic hierarchy process through a comprehensive investigation of existing research on data quality. Then, redundant features are filtered based on the Shapley value, and the multiple linear regression model is employed to adjust the weight of different indices. Finally, a case study of the customer and institution information of a trust institution is conducted. The results demonstrate that the utilization of completeness, accuracy, timeliness, consistency, uniqueness, and compliance to establish a quality evaluation index system proves instrumental in conducting extensive and in-depth research on data quality measurement dimensions. Additionally, the data quality evaluation approach based on multiple linear regression facilitates the batch scoring of data, and the incorporation of the Shapley value facilitates the elimination of invalid features. This enables the intelligent evaluation of large-scale data quality for financial data.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15100338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Financial Data Quality Evaluation Method Based on Multiple Linear Regression
With the rapid growth of customer data in financial institutions, such as trusts, issues of data quality have become increasingly prominent. The main challenge lies in constructing an effective evaluation method that ensures accurate and efficient assessment of customer data quality when dealing with massive customer data. In this paper, we construct a data quality evaluation index system based on the analytic hierarchy process through a comprehensive investigation of existing research on data quality. Then, redundant features are filtered based on the Shapley value, and the multiple linear regression model is employed to adjust the weight of different indices. Finally, a case study of the customer and institution information of a trust institution is conducted. The results demonstrate that the utilization of completeness, accuracy, timeliness, consistency, uniqueness, and compliance to establish a quality evaluation index system proves instrumental in conducting extensive and in-depth research on data quality measurement dimensions. Additionally, the data quality evaluation approach based on multiple linear regression facilitates the batch scoring of data, and the incorporation of the Shapley value facilitates the elimination of invalid features. This enables the intelligent evaluation of large-scale data quality for financial data.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.