非弹性介质中p波最小质量因子的复杂球波地震反演

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2023-10-14 DOI:10.1190/geo2023-0102.1
Guangsen Cheng, Chuanlin He, Zhaoyun Zong, Zhanyuan Liang, Xingyao Yin, Xiaoyu Zhang
{"title":"非弹性介质中p波最小质量因子的复杂球波地震反演","authors":"Guangsen Cheng, Chuanlin He, Zhaoyun Zong, Zhanyuan Liang, Xingyao Yin, Xiaoyu Zhang","doi":"10.1190/geo2023-0102.1","DOIUrl":null,"url":null,"abstract":"Attenuation always exists when seismic waves propagate in underground anelastic media, especially in hydrocarbon-bearing reservoirs. Quality factor Q or attenuation factor 1/ Q can be used to quantify the seismic wave attenuation and has become an important hydrocarbon indicator. The relationship between the plane-wave reflection coefficient ( R plane ) in anelastic media and P- and S-wave quality factors has been widely used in the plane-wave seismic inversion to estimate the quality factors. The R plane provides an adequate approximation for the deeper subsurface. However, for the shallow subsurface and anelastic wavefields excited by point sources, the R plane is inaccurate and its meaning involves some fundamental difficulties. In view of this, a Q-dependent P-P spherical-wave reflection coefficient ( R sph ) in anelastic media is used here. Considering that having too many parameters to be inverted will lead to unstable and inaccurate inversion results, we further derive an approximate anelastic R sph and anelastic spherical-wave impedance ( Z sph ), which are frequency dependent and are the functions of P- and S-wave velocities, density, and P-wave minimum quality factor ( Q pm ). Finally, a complex spherical-wave seismic inversion approach in anelastic media for the P-wave minimum quality factor is developed. Using the Bayesian inversion approach and complex convolution model, we first estimate the multilayer Z sph from the complex seismic traces with different frequencies and incidence angles. Based on the inverted angle- and frequency-dependent Z sph , the P- and S-wave velocities, density, and P-wave minimum quality factor are further estimated using a nonlinear inversion tool. Synthetic examples verify the feasibility and robustness of the complex spherical-wave seismic inversion approach in anelastic media. In the shallow subsurface, the spherical-wave inversion is superior to plane-wave inversion. A field example further demonstrates the accuracy and great potential of our approach in hydrocarbon-bearing reservoir prediction.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"28 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Spherical-wave Seismic Inversion in Anelastic Media for the P-wave Minimum Quality Factor\",\"authors\":\"Guangsen Cheng, Chuanlin He, Zhaoyun Zong, Zhanyuan Liang, Xingyao Yin, Xiaoyu Zhang\",\"doi\":\"10.1190/geo2023-0102.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attenuation always exists when seismic waves propagate in underground anelastic media, especially in hydrocarbon-bearing reservoirs. Quality factor Q or attenuation factor 1/ Q can be used to quantify the seismic wave attenuation and has become an important hydrocarbon indicator. The relationship between the plane-wave reflection coefficient ( R plane ) in anelastic media and P- and S-wave quality factors has been widely used in the plane-wave seismic inversion to estimate the quality factors. The R plane provides an adequate approximation for the deeper subsurface. However, for the shallow subsurface and anelastic wavefields excited by point sources, the R plane is inaccurate and its meaning involves some fundamental difficulties. In view of this, a Q-dependent P-P spherical-wave reflection coefficient ( R sph ) in anelastic media is used here. Considering that having too many parameters to be inverted will lead to unstable and inaccurate inversion results, we further derive an approximate anelastic R sph and anelastic spherical-wave impedance ( Z sph ), which are frequency dependent and are the functions of P- and S-wave velocities, density, and P-wave minimum quality factor ( Q pm ). Finally, a complex spherical-wave seismic inversion approach in anelastic media for the P-wave minimum quality factor is developed. Using the Bayesian inversion approach and complex convolution model, we first estimate the multilayer Z sph from the complex seismic traces with different frequencies and incidence angles. Based on the inverted angle- and frequency-dependent Z sph , the P- and S-wave velocities, density, and P-wave minimum quality factor are further estimated using a nonlinear inversion tool. Synthetic examples verify the feasibility and robustness of the complex spherical-wave seismic inversion approach in anelastic media. In the shallow subsurface, the spherical-wave inversion is superior to plane-wave inversion. A field example further demonstrates the accuracy and great potential of our approach in hydrocarbon-bearing reservoir prediction.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0102.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0102.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地震波在地下非弹性介质中,特别是在含油气储层中传播时,总是存在衰减现象。质量因子Q或衰减因子1/ Q可以量化地震波衰减,已成为重要的油气指标。非弹性介质中平面波反射系数(R面)与横波质量因子的关系在平面波地震反演中得到了广泛的应用。R平面为更深的地下提供了足够的近似。然而,对于点源激发的浅次地表和非弹性波场,R面是不准确的,其意义涉及一些基本的困难。鉴于此,本文采用非弹性介质中与q相关的P-P球波反射系数(rsph)。考虑到需要反演的参数过多会导致反演结果不稳定和不准确,我们进一步推导出近似的非弹性R - sph和非弹性球波阻抗(Z - sph),它们是频率相关的,是P波和s波速度、密度和P波最小质量因子(Q pm)的函数。最后,提出了一种非弹性介质中p波最小质量因子的复杂球波地震反演方法。首先利用贝叶斯反演方法和复卷积模型,对不同频率和入射角的复杂地震道进行多层Z - sph估计。基于角度和频率相关的Z - sph,利用非线性反演工具进一步估计了纵波和横波速度、密度和纵波最小质量因子。综合算例验证了非弹性介质中复杂球波地震反演方法的可行性和鲁棒性。在浅层地下,球波反演优于平面波反演。油田实例进一步证明了该方法在含油气储层预测中的准确性和巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Spherical-wave Seismic Inversion in Anelastic Media for the P-wave Minimum Quality Factor
Attenuation always exists when seismic waves propagate in underground anelastic media, especially in hydrocarbon-bearing reservoirs. Quality factor Q or attenuation factor 1/ Q can be used to quantify the seismic wave attenuation and has become an important hydrocarbon indicator. The relationship between the plane-wave reflection coefficient ( R plane ) in anelastic media and P- and S-wave quality factors has been widely used in the plane-wave seismic inversion to estimate the quality factors. The R plane provides an adequate approximation for the deeper subsurface. However, for the shallow subsurface and anelastic wavefields excited by point sources, the R plane is inaccurate and its meaning involves some fundamental difficulties. In view of this, a Q-dependent P-P spherical-wave reflection coefficient ( R sph ) in anelastic media is used here. Considering that having too many parameters to be inverted will lead to unstable and inaccurate inversion results, we further derive an approximate anelastic R sph and anelastic spherical-wave impedance ( Z sph ), which are frequency dependent and are the functions of P- and S-wave velocities, density, and P-wave minimum quality factor ( Q pm ). Finally, a complex spherical-wave seismic inversion approach in anelastic media for the P-wave minimum quality factor is developed. Using the Bayesian inversion approach and complex convolution model, we first estimate the multilayer Z sph from the complex seismic traces with different frequencies and incidence angles. Based on the inverted angle- and frequency-dependent Z sph , the P- and S-wave velocities, density, and P-wave minimum quality factor are further estimated using a nonlinear inversion tool. Synthetic examples verify the feasibility and robustness of the complex spherical-wave seismic inversion approach in anelastic media. In the shallow subsurface, the spherical-wave inversion is superior to plane-wave inversion. A field example further demonstrates the accuracy and great potential of our approach in hydrocarbon-bearing reservoir prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信