{"title":"基于小波的聚合功能数据分析方法","authors":"Alex Rodrigo dos Santos Sousa","doi":"10.1515/mcma-2023-2016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider aggregated functional data composed by a linear combination of component curves and the problem of estimating these component curves. We propose the application of a bayesian wavelet shrinkage rule based on a mixture of a point mass function at zero and the logistic distribution as prior to wavelet coefficients to estimate mean curves of components. This procedure has the advantage of estimating component functions with important local characteristics such as discontinuities, spikes and oscillations for example, due the features of wavelet basis expansion of functions. Simulation studies were done to evaluate the performance of the proposed method, and its results are compared with a spline-based method. An application on the so-called Tecator dataset is also provided.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A wavelet-based method in aggregated functional data analysis\",\"authors\":\"Alex Rodrigo dos Santos Sousa\",\"doi\":\"10.1515/mcma-2023-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider aggregated functional data composed by a linear combination of component curves and the problem of estimating these component curves. We propose the application of a bayesian wavelet shrinkage rule based on a mixture of a point mass function at zero and the logistic distribution as prior to wavelet coefficients to estimate mean curves of components. This procedure has the advantage of estimating component functions with important local characteristics such as discontinuities, spikes and oscillations for example, due the features of wavelet basis expansion of functions. Simulation studies were done to evaluate the performance of the proposed method, and its results are compared with a spline-based method. An application on the so-called Tecator dataset is also provided.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A wavelet-based method in aggregated functional data analysis
Abstract In this paper, we consider aggregated functional data composed by a linear combination of component curves and the problem of estimating these component curves. We propose the application of a bayesian wavelet shrinkage rule based on a mixture of a point mass function at zero and the logistic distribution as prior to wavelet coefficients to estimate mean curves of components. This procedure has the advantage of estimating component functions with important local characteristics such as discontinuities, spikes and oscillations for example, due the features of wavelet basis expansion of functions. Simulation studies were done to evaluate the performance of the proposed method, and its results are compared with a spline-based method. An application on the so-called Tecator dataset is also provided.