有很多同余能量的晶格

Q3 Mathematics
Gábor Czédli
{"title":"有很多同余能量的晶格","authors":"Gábor Czédli","doi":"10.30755/nsjom.15406","DOIUrl":null,"url":null,"abstract":"In 1978, motivated by E. H\\\"uckel's work in quantum chemistry, I. Gutman introduced the concept of the energy of a finite simple graph $G$ as the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. At the time of writing, the MathSciNet search for\"Title=(graph energy) AND Review Text=(eigenvalue)\"returns 351 publications, most of which going after Gutman's definition. A congruence $\\alpha$ of a finite algebra $A$ turns $A$ into a simple graph: we connect $x\\neq y\\in A$ by an edge iff $(x,y)\\in\\alpha$; we let En$(\\alpha)$ be the energy of this graph. We introduce the congruence energy CE$(A)$ of $A$ by CE$(A):=\\sum\\{$En$(\\alpha): \\alpha\\in$ Con$(A)\\}$. Let LAT$(n)$ and CDA$(n)$ stand for the class of $n$-element lattices and that of $n$-element congruence distributive algebras of any type. For a class $\\mathcal X$, let CE$(\\mathcal X):= \\{$CE$(A): A\\in \\mathcal X\\}$. We prove the following. (1) For $\\alpha\\in A$, En$(\\alpha)/2$ is the height of $\\alpha$ in the equivalence lattice of $A$. (2) The largest number and the second largest number in CE(LAT($n$)) are $(n-1)\\cdot 2^{n-1}$ and, for $n\\geq 4$, $(n-1)\\cdot 2^{n-2}+2^{n-3}$; these numbers are only witnessed by chains and lattices with exactly one two-element antichain, respectively. (3) The largest number in CE(CDA($n$)) is also $(n-1)\\cdot 2^{n-1}$, and if CE$(A)=(n-1)\\cdot 2^{n-1}$ for an $A\\in$ CDA$(n)$, then Con$(A)$ is a boolean lattice with size $|$Con$(A)|=2^{n-1}$.","PeriodicalId":38723,"journal":{"name":"Novi Sad Journal of Mathematics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattices with lots of congruence energy\",\"authors\":\"Gábor Czédli\",\"doi\":\"10.30755/nsjom.15406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1978, motivated by E. H\\\\\\\"uckel's work in quantum chemistry, I. Gutman introduced the concept of the energy of a finite simple graph $G$ as the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. At the time of writing, the MathSciNet search for\\\"Title=(graph energy) AND Review Text=(eigenvalue)\\\"returns 351 publications, most of which going after Gutman's definition. A congruence $\\\\alpha$ of a finite algebra $A$ turns $A$ into a simple graph: we connect $x\\\\neq y\\\\in A$ by an edge iff $(x,y)\\\\in\\\\alpha$; we let En$(\\\\alpha)$ be the energy of this graph. We introduce the congruence energy CE$(A)$ of $A$ by CE$(A):=\\\\sum\\\\{$En$(\\\\alpha): \\\\alpha\\\\in$ Con$(A)\\\\}$. Let LAT$(n)$ and CDA$(n)$ stand for the class of $n$-element lattices and that of $n$-element congruence distributive algebras of any type. For a class $\\\\mathcal X$, let CE$(\\\\mathcal X):= \\\\{$CE$(A): A\\\\in \\\\mathcal X\\\\}$. We prove the following. (1) For $\\\\alpha\\\\in A$, En$(\\\\alpha)/2$ is the height of $\\\\alpha$ in the equivalence lattice of $A$. (2) The largest number and the second largest number in CE(LAT($n$)) are $(n-1)\\\\cdot 2^{n-1}$ and, for $n\\\\geq 4$, $(n-1)\\\\cdot 2^{n-2}+2^{n-3}$; these numbers are only witnessed by chains and lattices with exactly one two-element antichain, respectively. (3) The largest number in CE(CDA($n$)) is also $(n-1)\\\\cdot 2^{n-1}$, and if CE$(A)=(n-1)\\\\cdot 2^{n-1}$ for an $A\\\\in$ CDA$(n)$, then Con$(A)$ is a boolean lattice with size $|$Con$(A)|=2^{n-1}$.\",\"PeriodicalId\":38723,\"journal\":{\"name\":\"Novi Sad Journal of Mathematics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novi Sad Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30755/nsjom.15406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novi Sad Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30755/nsjom.15406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattices with lots of congruence energy
In 1978, motivated by E. H\"uckel's work in quantum chemistry, I. Gutman introduced the concept of the energy of a finite simple graph $G$ as the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. At the time of writing, the MathSciNet search for"Title=(graph energy) AND Review Text=(eigenvalue)"returns 351 publications, most of which going after Gutman's definition. A congruence $\alpha$ of a finite algebra $A$ turns $A$ into a simple graph: we connect $x\neq y\in A$ by an edge iff $(x,y)\in\alpha$; we let En$(\alpha)$ be the energy of this graph. We introduce the congruence energy CE$(A)$ of $A$ by CE$(A):=\sum\{$En$(\alpha): \alpha\in$ Con$(A)\}$. Let LAT$(n)$ and CDA$(n)$ stand for the class of $n$-element lattices and that of $n$-element congruence distributive algebras of any type. For a class $\mathcal X$, let CE$(\mathcal X):= \{$CE$(A): A\in \mathcal X\}$. We prove the following. (1) For $\alpha\in A$, En$(\alpha)/2$ is the height of $\alpha$ in the equivalence lattice of $A$. (2) The largest number and the second largest number in CE(LAT($n$)) are $(n-1)\cdot 2^{n-1}$ and, for $n\geq 4$, $(n-1)\cdot 2^{n-2}+2^{n-3}$; these numbers are only witnessed by chains and lattices with exactly one two-element antichain, respectively. (3) The largest number in CE(CDA($n$)) is also $(n-1)\cdot 2^{n-1}$, and if CE$(A)=(n-1)\cdot 2^{n-1}$ for an $A\in$ CDA$(n)$, then Con$(A)$ is a boolean lattice with size $|$Con$(A)|=2^{n-1}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Novi Sad Journal of Mathematics
Novi Sad Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信