Möbius条的三角剖分数

IF 0.2 Q4 MATHEMATICS
Bazier-Matte Véronique, Huang Ruiyan, Luo Hanyi
{"title":"Möbius条的三角剖分数","authors":"Bazier-Matte Véronique, Huang Ruiyan, Luo Hanyi","doi":"10.2140/involve.2023.16.547","DOIUrl":null,"url":null,"abstract":"Consider a M\\\"obius strip with $n$ chosen points on its edge. A triangulation is a maximal collection of arcs among these points and cuts the strip into triangles. In this paper, we proved the number of all triangulations that one can obtain from a M\\\"obius strip with $n$ chosen points on its edge is given by $4^{n-1}+\\binom{2n-2}{n-1}$, then we made the connection with the number of clusters in the quasi-cluster algebra arising from the M\\\"obius strip.","PeriodicalId":36396,"journal":{"name":"Involve","volume":"16 9","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Number of triangulations of a Möbius strip\",\"authors\":\"Bazier-Matte Véronique, Huang Ruiyan, Luo Hanyi\",\"doi\":\"10.2140/involve.2023.16.547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a M\\\\\\\"obius strip with $n$ chosen points on its edge. A triangulation is a maximal collection of arcs among these points and cuts the strip into triangles. In this paper, we proved the number of all triangulations that one can obtain from a M\\\\\\\"obius strip with $n$ chosen points on its edge is given by $4^{n-1}+\\\\binom{2n-2}{n-1}$, then we made the connection with the number of clusters in the quasi-cluster algebra arising from the M\\\\\\\"obius strip.\",\"PeriodicalId\":36396,\"journal\":{\"name\":\"Involve\",\"volume\":\"16 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Involve\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/involve.2023.16.547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Involve","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/involve.2023.16.547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

考虑一条M的椭圆形长条,它的边缘上有n个点。三角剖分是将这些点之间的弧的最大集合,并将条带切割成三角形。本文证明了沿上有$n$个点的M条上可以得到的所有三角划分的个数由$4^{n-1}+\binom{2n-2}{n-1}$给出,然后与M条上产生的拟聚类代数中的簇的个数建立了联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Number of triangulations of a Möbius strip
Consider a M\"obius strip with $n$ chosen points on its edge. A triangulation is a maximal collection of arcs among these points and cuts the strip into triangles. In this paper, we proved the number of all triangulations that one can obtain from a M\"obius strip with $n$ chosen points on its edge is given by $4^{n-1}+\binom{2n-2}{n-1}$, then we made the connection with the number of clusters in the quasi-cluster algebra arising from the M\"obius strip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Involve
Involve Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信