用块矩法分析抛物系统的非标量控制问题

IF 0.8 4区 数学 Q2 MATHEMATICS
Franck Boyer, Morgan Morancey
{"title":"用块矩法分析抛物系统的非标量控制问题","authors":"Franck Boyer, Morgan Morancey","doi":"10.5802/crmath.487","DOIUrl":null,"url":null,"abstract":"This article deals with abstract linear time invariant controlled systems of parabolic type. In [9], with A. Benabdallah, we introduced the block moment method for scalar control operators. The principal aim of this method is to compute the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in particular in the case when spectral condensation occurs. The purpose of the present article is to push forward the analysis to deal with any admissible control operator. The considered setting leads to applications to one dimensional parabolic-type equations or coupled systems of such equations.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"29 3","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of non scalar control problems for parabolic systems by the block moment method\",\"authors\":\"Franck Boyer, Morgan Morancey\",\"doi\":\"10.5802/crmath.487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with abstract linear time invariant controlled systems of parabolic type. In [9], with A. Benabdallah, we introduced the block moment method for scalar control operators. The principal aim of this method is to compute the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in particular in the case when spectral condensation occurs. The purpose of the present article is to push forward the analysis to deal with any admissible control operator. The considered setting leads to applications to one dimensional parabolic-type equations or coupled systems of such equations.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"29 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.487\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.487","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

研究一类抽象的抛物型线性时不变控制系统。在[9]中,我们与A. Benabdallah一起引入了标量控制算子的块矩法。该方法的主要目的是计算将初始条件(或初始条件空间)驱动为零所需的最小时间,特别是在发生光谱冷凝的情况下。本文的目的是推动分析处理任何允许的控制算子。所考虑的设置导致一维抛物型方程或此类方程的耦合系统的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of non scalar control problems for parabolic systems by the block moment method
This article deals with abstract linear time invariant controlled systems of parabolic type. In [9], with A. Benabdallah, we introduced the block moment method for scalar control operators. The principal aim of this method is to compute the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in particular in the case when spectral condensation occurs. The purpose of the present article is to push forward the analysis to deal with any admissible control operator. The considered setting leads to applications to one dimensional parabolic-type equations or coupled systems of such equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信