最大图基类型、P-理想和弱鲁丁-凯斯勒阶

IF 0.3 4区 数学 Q1 Arts and Humanities
Konstantinos A. Beros, Paul B. Larson
{"title":"最大图基类型、P-理想和弱鲁丁-凯斯勒阶","authors":"Konstantinos A. Beros,&nbsp;Paul B. Larson","doi":"10.1007/s00153-023-00897-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study some new examples of ideals on <span>\\(\\omega \\)</span> with maximal Tukey type (that is, maximal among partial orders of size continuum). This discussion segues into an examination of a refinement of the Tukey order—known as the <i>weak Rudin–Keisler order</i>—and its structure when restricted to these ideals of maximal Tukey type. Mirroring a result of Fremlin (Note Mat 11:177–214, 1991) on the Tukey order, we also show that there is an analytic P-ideal above all other analytic P-ideals in the weak Rudin–Keisler order.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Tukey types, P-ideals and the weak Rudin–Keisler order\",\"authors\":\"Konstantinos A. Beros,&nbsp;Paul B. Larson\",\"doi\":\"10.1007/s00153-023-00897-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study some new examples of ideals on <span>\\\\(\\\\omega \\\\)</span> with maximal Tukey type (that is, maximal among partial orders of size continuum). This discussion segues into an examination of a refinement of the Tukey order—known as the <i>weak Rudin–Keisler order</i>—and its structure when restricted to these ideals of maximal Tukey type. Mirroring a result of Fremlin (Note Mat 11:177–214, 1991) on the Tukey order, we also show that there is an analytic P-ideal above all other analytic P-ideals in the weak Rudin–Keisler order.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00897-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00897-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一些具有最大图基类型(即在大小连续的部分阶中最大)的 \(\omega \) 上理想的新例子。讨论将转入对 Tukey 阶的细化--即弱 Rudin-Keisler 阶--及其结构的研究,当它被限制在这些最大 Tukey 型的ideals 时。与弗雷姆林(Note Mat 11:177-214, 1991)关于图基阶的一个结果一样,我们也证明了在弱鲁丁-凯斯勒阶中,有一个解析 P 理想高于所有其他解析 P 理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Tukey types, P-ideals and the weak Rudin–Keisler order

In this paper, we study some new examples of ideals on \(\omega \) with maximal Tukey type (that is, maximal among partial orders of size continuum). This discussion segues into an examination of a refinement of the Tukey order—known as the weak Rudin–Keisler order—and its structure when restricted to these ideals of maximal Tukey type. Mirroring a result of Fremlin (Note Mat 11:177–214, 1991) on the Tukey order, we also show that there is an analytic P-ideal above all other analytic P-ideals in the weak Rudin–Keisler order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信