非退化多项式的几何:接触轨迹的动力邻近环与上同调

Pub Date : 2023-10-31 DOI:10.5802/crmath.492
Quy Thuong Lê, Tat Thang Nguyen
{"title":"非退化多项式的几何:接触轨迹的动力邻近环与上同调","authors":"Quy Thuong Lê, Tat Thang Nguyen","doi":"10.5802/crmath.492","DOIUrl":null,"url":null,"abstract":"We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part to questions concerning the motivic nearby cycles of restriction functions and the integral identity conjecture in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci\",\"authors\":\"Quy Thuong Lê, Tat Thang Nguyen\",\"doi\":\"10.5802/crmath.492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part to questions concerning the motivic nearby cycles of restriction functions and the integral identity conjecture in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过接触轨迹和动力邻近环的数据,研究了在Kouchnirenko和牛顿多面体两种意义上的非简并的复系数多项式。引入这些量的显式描述,我们可以部分地回答有关牛顿非退化多项式中限制函数的动机邻近环和积分恒等猜想的问题。此外,在Kouchnirenko意义上的非简并性下,我们给出了接触轨迹的上同群的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part to questions concerning the motivic nearby cycles of restriction functions and the integral identity conjecture in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信