{"title":"非退化多项式的几何:接触轨迹的动力邻近环与上同调","authors":"Quy Thuong Lê, Tat Thang Nguyen","doi":"10.5802/crmath.492","DOIUrl":null,"url":null,"abstract":"We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part to questions concerning the motivic nearby cycles of restriction functions and the integral identity conjecture in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci\",\"authors\":\"Quy Thuong Lê, Tat Thang Nguyen\",\"doi\":\"10.5802/crmath.492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part to questions concerning the motivic nearby cycles of restriction functions and the integral identity conjecture in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part to questions concerning the motivic nearby cycles of restriction functions and the integral identity conjecture in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.