PG 1004+130:混合形态源或重新启动的FRII?uGMRT偏振研究

IF 4.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Salmoli Ghosh, P. Kharb, J. Baghel, S. Silpa
{"title":"PG 1004+130:混合形态源或重新启动的FRII?uGMRT偏振研究","authors":"Salmoli Ghosh, P. Kharb, J. Baghel, S. Silpa","doi":"10.3847/1538-4357/acfa00","DOIUrl":null,"url":null,"abstract":"Abstract We present the polarization image of the hybrid morphology and broad absorption line quasar PG 1004+130 at 694 MHz obtained with the upgraded Giant Metrewave Radio Telescope. We detect linear polarization in this source’s core, jets, and lobes. The visible discontinuity in total intensity between the inner jets and the kiloparsec-scale lobes suggests that the source is restarted. The inferred poloidal magnetic ( B -) field structure in the inner jet is consistent with that observed in Fanaroff–Riley (FR) type II sources, as are the B -fields aligned with the lobe edges. Moreover, archival Chandra and XMM-Newton data indicate that PG 1004+130 displays several FRII-jetlike properties in X-rays. We conclude that PG 1004+130 is a restarted quasar, with both episodes of activity being FRII type. The spectral index images show the presence of an inverted spectrum core ( α = +0.30 ± 0.01) and a steep spectrum inner jet ( α = −0.62 ± 0.06) surrounded by much steeper lobe emission ( α ≈ −1.2 ± 0.1), consistent with the suggestion that the lobes are from a previous activity episode. The spectral age difference between the two activity episodes is likely to be small (<1.2 × 10 7 yr), in comparison to the lobe ages (∼3.3 × 10 7 yr). The inferred B -fields in the lobes are suggestive of turbulence and the mixing of plasma. This may account for the absence of X-ray cavities around this source, similar to what is observed in M87's radio halo region. The depolarization models reveal that thermal gas of mass ∼(2.4 ± 0.9) × 10 9 M ⊙ is mixed with the nonthermal plasma in the lobes of PG 1004+130.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PG 1004+130: Hybrid Morphology Source or a Restarted FRII? A uGMRT Polarimetric Investigation\",\"authors\":\"Salmoli Ghosh, P. Kharb, J. Baghel, S. Silpa\",\"doi\":\"10.3847/1538-4357/acfa00\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present the polarization image of the hybrid morphology and broad absorption line quasar PG 1004+130 at 694 MHz obtained with the upgraded Giant Metrewave Radio Telescope. We detect linear polarization in this source’s core, jets, and lobes. The visible discontinuity in total intensity between the inner jets and the kiloparsec-scale lobes suggests that the source is restarted. The inferred poloidal magnetic ( B -) field structure in the inner jet is consistent with that observed in Fanaroff–Riley (FR) type II sources, as are the B -fields aligned with the lobe edges. Moreover, archival Chandra and XMM-Newton data indicate that PG 1004+130 displays several FRII-jetlike properties in X-rays. We conclude that PG 1004+130 is a restarted quasar, with both episodes of activity being FRII type. The spectral index images show the presence of an inverted spectrum core ( α = +0.30 ± 0.01) and a steep spectrum inner jet ( α = −0.62 ± 0.06) surrounded by much steeper lobe emission ( α ≈ −1.2 ± 0.1), consistent with the suggestion that the lobes are from a previous activity episode. The spectral age difference between the two activity episodes is likely to be small (<1.2 × 10 7 yr), in comparison to the lobe ages (∼3.3 × 10 7 yr). The inferred B -fields in the lobes are suggestive of turbulence and the mixing of plasma. This may account for the absence of X-ray cavities around this source, similar to what is observed in M87's radio halo region. The depolarization models reveal that thermal gas of mass ∼(2.4 ± 0.9) × 10 9 M ⊙ is mixed with the nonthermal plasma in the lobes of PG 1004+130.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acfa00\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfa00","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文给出了用改进的巨型米波射电望远镜在694 MHz波段拍摄到的混合形态和宽吸收线类星体PG 1004+130的偏振图像。我们在这个源的核心、喷流和波瓣中探测到线偏振。内部喷流和千帕秒尺度叶之间可见的总强度不连续表明源重新启动了。推断出的内喷流的极向磁(B -)场结构与在Fanaroff-Riley (FR) II型源中观测到的一致,B -场也与波瓣边缘对齐。此外,钱德拉和xmm -牛顿的档案数据表明,PG 1004+130在x射线中显示出几个类似frii喷流的特性。我们认为PG 1004+130是一个重新启动的类星体,两次活动均为FRII型。光谱指数图像显示了一个倒置的光谱核心(α = +0.30±0.01)和一个陡峭的光谱内喷流(α = - 0.62±0.06),周围是更陡峭的叶状发射(α≈- 1.2±0.1),与先前活动事件的叶状发射一致。与波叶年龄(~ 3.3 × 10.7年)相比,两次活动期间的光谱年龄差异可能很小(<1.2 × 10.7年)。在叶状体中推断出的B场暗示了湍流和等离子体的混合。这可能解释了这个源周围没有x射线空洞的原因,类似于在M87的射电晕区域观察到的情况。退极化模型表明,PG 1004+130的叶叶中存在质量为~(2.4±0.9)× 10 9 M⊙的热气体与非热等离子体混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PG 1004+130: Hybrid Morphology Source or a Restarted FRII? A uGMRT Polarimetric Investigation
Abstract We present the polarization image of the hybrid morphology and broad absorption line quasar PG 1004+130 at 694 MHz obtained with the upgraded Giant Metrewave Radio Telescope. We detect linear polarization in this source’s core, jets, and lobes. The visible discontinuity in total intensity between the inner jets and the kiloparsec-scale lobes suggests that the source is restarted. The inferred poloidal magnetic ( B -) field structure in the inner jet is consistent with that observed in Fanaroff–Riley (FR) type II sources, as are the B -fields aligned with the lobe edges. Moreover, archival Chandra and XMM-Newton data indicate that PG 1004+130 displays several FRII-jetlike properties in X-rays. We conclude that PG 1004+130 is a restarted quasar, with both episodes of activity being FRII type. The spectral index images show the presence of an inverted spectrum core ( α = +0.30 ± 0.01) and a steep spectrum inner jet ( α = −0.62 ± 0.06) surrounded by much steeper lobe emission ( α ≈ −1.2 ± 0.1), consistent with the suggestion that the lobes are from a previous activity episode. The spectral age difference between the two activity episodes is likely to be small (<1.2 × 10 7 yr), in comparison to the lobe ages (∼3.3 × 10 7 yr). The inferred B -fields in the lobes are suggestive of turbulence and the mixing of plasma. This may account for the absence of X-ray cavities around this source, similar to what is observed in M87's radio halo region. The depolarization models reveal that thermal gas of mass ∼(2.4 ± 0.9) × 10 9 M ⊙ is mixed with the nonthermal plasma in the lobes of PG 1004+130.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysical Journal
Astrophysical Journal 地学天文-天文与天体物理
CiteScore
8.40
自引率
30.60%
发文量
2854
审稿时长
1 months
期刊介绍: The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信