{"title":"高速铁路受电弓-接触网系统过渡点消失建模与分析","authors":"Junqing Chen, Jidong Liu, Jinfa Guan, Feng Han, Jiqing Wu, Weirong Chen","doi":"10.1177/16878132231210083","DOIUrl":null,"url":null,"abstract":"During the operation of high-speed railway, the transition-point disappearance phenomenon, which is caused by the deformation of pantograph head, poses a safety threat to the pantograph-catenary system. In this study, the analytical model for transition-point disappearance analysis is presented. The instantaneous profile, as well as the deformation process of the pantograph head under different contact force values and positions or different pantograph-head parameters can be solved using the model. Curve equation, force analysis, coordinate axis rotation, and few other methods are adopted to achieve simplified modeling. The proposed modeling method and analysis conclusion provide theoretical support for the permissible contact force range calculation and pantograph-head parameters optimization to prevent transition-point disappearance. The effectiveness of the proposed model is verified using both finite element simulation and experimental measurements. Finally, a case analysis for the prevention of transition-point disappearance is conducted, using pantographs with the models CX-GI and DSA250 as examples.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and analysis of transition-point disappearance in high-speed railway pantograph-catenary system\",\"authors\":\"Junqing Chen, Jidong Liu, Jinfa Guan, Feng Han, Jiqing Wu, Weirong Chen\",\"doi\":\"10.1177/16878132231210083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the operation of high-speed railway, the transition-point disappearance phenomenon, which is caused by the deformation of pantograph head, poses a safety threat to the pantograph-catenary system. In this study, the analytical model for transition-point disappearance analysis is presented. The instantaneous profile, as well as the deformation process of the pantograph head under different contact force values and positions or different pantograph-head parameters can be solved using the model. Curve equation, force analysis, coordinate axis rotation, and few other methods are adopted to achieve simplified modeling. The proposed modeling method and analysis conclusion provide theoretical support for the permissible contact force range calculation and pantograph-head parameters optimization to prevent transition-point disappearance. The effectiveness of the proposed model is verified using both finite element simulation and experimental measurements. Finally, a case analysis for the prevention of transition-point disappearance is conducted, using pantographs with the models CX-GI and DSA250 as examples.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231210083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231210083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Modeling and analysis of transition-point disappearance in high-speed railway pantograph-catenary system
During the operation of high-speed railway, the transition-point disappearance phenomenon, which is caused by the deformation of pantograph head, poses a safety threat to the pantograph-catenary system. In this study, the analytical model for transition-point disappearance analysis is presented. The instantaneous profile, as well as the deformation process of the pantograph head under different contact force values and positions or different pantograph-head parameters can be solved using the model. Curve equation, force analysis, coordinate axis rotation, and few other methods are adopted to achieve simplified modeling. The proposed modeling method and analysis conclusion provide theoretical support for the permissible contact force range calculation and pantograph-head parameters optimization to prevent transition-point disappearance. The effectiveness of the proposed model is verified using both finite element simulation and experimental measurements. Finally, a case analysis for the prevention of transition-point disappearance is conducted, using pantographs with the models CX-GI and DSA250 as examples.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering