{"title":"几类有向图的消色差数","authors":"S. M. Hegde, Lolita Priya Castelino","doi":"10.1142/s1793830923500908","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"364 13","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achromatic Number of Some Classes of Digraphs\",\"authors\":\"S. M. Hegde, Lolita Priya Castelino\",\"doi\":\"10.1142/s1793830923500908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"364 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.