几类有向图的消色差数

IF 0.6 Q4 MATHEMATICS, APPLIED
S. M. Hegde, Lolita Priya Castelino
{"title":"几类有向图的消色差数","authors":"S. M. Hegde, Lolita Priya Castelino","doi":"10.1142/s1793830923500908","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"364 13","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achromatic Number of Some Classes of Digraphs\",\"authors\":\"S. M. Hegde, Lolita Priya Castelino\",\"doi\":\"10.1142/s1793830923500908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"364 13\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个有向图,有[公式:见文]顶点和[公式:见文]圆弧。当且仅当对于[公式:见文本]的每个弧[公式:见文本],有序对[公式:见文本]至少出现一次时,一个函数[公式:见文本]被称为[公式:见文本]的完全着色。如果配对[公式:见文]未分配,则[公式:见文]称为[公式:见文]的[公式:见文][公式:见文][公式:见文][公式:见文]。[公式:见文]允许适当完全着色的最大值[公式:见文]称为[公式:见文]的[公式:见文][公式:见文],并用[公式:见文]表示。我们得到了有向图和正则有向图消色差数的上界,并研究了单径有向图、独轮车有向图、循环有向图等有向图的消色差数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achromatic Number of Some Classes of Digraphs
Let [Formula: see text] be a directed graph with [Formula: see text] vertices and [Formula: see text] arcs. A function [Formula: see text] where [Formula: see text] is called a complete coloring of [Formula: see text] if and only if for every arc [Formula: see text] of [Formula: see text], the ordered pair [Formula: see text] appears at least once. If the pair [Formula: see text] is not assigned, then [Formula: see text] is called a [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text]. The maximum [Formula: see text] for which [Formula: see text] admits a proper complete coloring is called the [Formula: see text] [Formula: see text] of [Formula: see text] and is denoted by [Formula: see text]. We obtain the upper bound for the achromatic number of digraphs and regular digraphs and investigate the same for some classes of digraphs such as unipath, unicycle, circulant digraphs, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信