分形与一元二阶后继理论

IF 0.3 Q4 LOGIC
Philipp Hieronymi, Erik Walsberg
{"title":"分形与一元二阶后继理论","authors":"Philipp Hieronymi, Erik Walsberg","doi":"10.4115/jla.2023.15.5","DOIUrl":null,"url":null,"abstract":"We show that if $X$ is virtually any classical fractal subset of $\\mathbb{R}^n$, then $(\\mathbb{R},,+,X)$ interprets the monadic second order theory of $(\\mathbb{N},+1)$.This result is sharp in the sense that the standard model of the monadic second order theory of $(\\mathbb{N},+1)$ is known to interpret $(\\mathbb{R},,+,X)$ for various classical fractals $X$ including the middle-thirds Cantor set and the Sierpinski carpet.Let $X \\subseteq \\mathbb{R}^n$ be closed and nonempty.We show that if the $C^k$-smooth points of $X$ are not dense in $X$ for some $k \\geq 1$, then $(\\mathbb{R},,+,X)$ interprets the monadic second order theory of $(\\mathbb{N},+1)$.The same conclusion holds if the packing dimension of $X$ is strictly greater than the topological dimension of $X$ and $X$ has no affine points.","PeriodicalId":53872,"journal":{"name":"Journal of Logic and Analysis","volume":"48 73","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fractals and the monadic second order theory of one successor\",\"authors\":\"Philipp Hieronymi, Erik Walsberg\",\"doi\":\"10.4115/jla.2023.15.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if $X$ is virtually any classical fractal subset of $\\\\mathbb{R}^n$, then $(\\\\mathbb{R},,+,X)$ interprets the monadic second order theory of $(\\\\mathbb{N},+1)$.This result is sharp in the sense that the standard model of the monadic second order theory of $(\\\\mathbb{N},+1)$ is known to interpret $(\\\\mathbb{R},,+,X)$ for various classical fractals $X$ including the middle-thirds Cantor set and the Sierpinski carpet.Let $X \\\\subseteq \\\\mathbb{R}^n$ be closed and nonempty.We show that if the $C^k$-smooth points of $X$ are not dense in $X$ for some $k \\\\geq 1$, then $(\\\\mathbb{R},,+,X)$ interprets the monadic second order theory of $(\\\\mathbb{N},+1)$.The same conclusion holds if the packing dimension of $X$ is strictly greater than the topological dimension of $X$ and $X$ has no affine points.\",\"PeriodicalId\":53872,\"journal\":{\"name\":\"Journal of Logic and Analysis\",\"volume\":\"48 73\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4115/jla.2023.15.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4115/jla.2023.15.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

我们证明如果 $X$ 是否有经典的分形子集 $\mathbb{R}^n$那么, $(\mathbb{R},,+,X)$ 的一元二阶理论 $(\mathbb{N},+1)$的一元二阶理论的标准模型在某种意义上说,这个结果是尖锐的 $(\mathbb{N},+1)$ 是已知的 $(\mathbb{R},,+,X)$ 对于各种经典分形 $X$ 包括中间三分之一的康托套装和席尔宾斯基地毯。让 $X \subseteq \mathbb{R}^n$ 保持封闭和非空。我们证明如果 $C^k$-平滑点 $X$ 不密集 $X$ 对一些人来说 $k \geq 1$那么, $(\mathbb{R},,+,X)$ 的一元二阶理论 $(\mathbb{N},+1)$的包装尺寸,同样的结论成立 $X$ 严格大于的拓扑维数 $X$ 和 $X$ 没有仿射点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractals and the monadic second order theory of one successor
We show that if $X$ is virtually any classical fractal subset of $\mathbb{R}^n$, then $(\mathbb{R},,+,X)$ interprets the monadic second order theory of $(\mathbb{N},+1)$.This result is sharp in the sense that the standard model of the monadic second order theory of $(\mathbb{N},+1)$ is known to interpret $(\mathbb{R},,+,X)$ for various classical fractals $X$ including the middle-thirds Cantor set and the Sierpinski carpet.Let $X \subseteq \mathbb{R}^n$ be closed and nonempty.We show that if the $C^k$-smooth points of $X$ are not dense in $X$ for some $k \geq 1$, then $(\mathbb{R},,+,X)$ interprets the monadic second order theory of $(\mathbb{N},+1)$.The same conclusion holds if the packing dimension of $X$ is strictly greater than the topological dimension of $X$ and $X$ has no affine points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
35 weeks
期刊介绍: "Journal of Logic and Analysis" publishes papers of high quality involving interaction between ideas or techniques from mathematical logic and other areas of mathematics (especially - but not limited to - pure and applied analysis). The journal welcomes papers in nonstandard analysis and related areas of applied model theory; papers involving interplay between mathematics and logic (including foundational aspects of such interplay); mathematical papers using or developing analytical methods having connections to any area of mathematical logic. "Journal of Logic and Analysis" is intended to be a natural home for papers with an essential interaction between mathematical logic and other areas of mathematics, rather than for papers purely in logic or analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信