{"title":"伽玛暴余辉中的射电高原及其在宇宙学中的应用","authors":"Xiao Tian, Jia-Lun Li, Shuang-Xi Yi, Yu-Peng Yang, Jian-Ping Hu, Yan-Kun Qu, Fa-Yin Wang","doi":"10.3847/1538-4357/acfed8","DOIUrl":null,"url":null,"abstract":"Abstract The plateau phase in radio afterglows has been observed in very few gamma-ray bursts (GRBs), and in this paper, 27 radio light curves with plateau phases were acquired from the published literature. We obtain the related parameters of the radio plateau, such as temporal indexes during the plateau phase ( α 1 and α 2 ), break time ( T b,z ), and the corresponding radio flux ( F b ). The two-parameter Dainotti relation between the break time of the plateau and the corresponding break luminosity ( L b,z ) in the radio band is <?CDATA ${L}_{{\\rm{b}},{\\rm{z}}}\\propto {T}_{{\\rm{b}},{\\rm{z}}}^{-1.20\\pm 0.24}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.20</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.24</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> . Including the isotropic energy E γ ,iso and peak energy E p,i , the three-parameter correlations for the radio plateaus are written as <?CDATA ${L}_{{\\rm{b}},{\\rm{z}}}\\propto {T}_{{\\rm{b}},{\\rm{z}}}^{-1.01\\pm 0.24}{E}_{\\gamma ,\\mathrm{iso}}^{0.18\\pm 0.09}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.01</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.24</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>iso</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.18</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and <?CDATA ${L}_{{\\rm{b}},{\\rm{z}}}\\propto {T}_{{\\rm{b}},{\\rm{z}}}^{-1.18\\pm 0.27}{E}_{{\\rm{p}},{\\rm{i}}}^{0.05\\pm 0.28}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.18</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.27</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">p</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">i</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.05</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.28</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , respectively. The correlations are less consistent with those of the X-ray and optical plateaus, implying that radio plateaus may have a different physical mechanism. The typical frequencies crossing the observational band may be a reasonable hypothesis that causes the breaks of the radio afterglows. We calibrate the GRB empirical luminosity correlations as a standard candle for constraining cosmological parameters and find that our samples can constrain the flat ΛCDM model well but are not sensitive to the nonflat ΛCDM model. By combining GRBs with other probes, such as supernovae and the CMB, the constraints on the cosmological parameters are Ω m = 0.297 ± 0.006 for the flat ΛCDM model and Ω m = 0.283 ± 0.008, Ω Λ = 0.711 ± 0.006 for the nonflat ΛCDM model.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"28 4","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Plateaus in Gamma-Ray Burst Afterglows and Their Application in Cosmology\",\"authors\":\"Xiao Tian, Jia-Lun Li, Shuang-Xi Yi, Yu-Peng Yang, Jian-Ping Hu, Yan-Kun Qu, Fa-Yin Wang\",\"doi\":\"10.3847/1538-4357/acfed8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The plateau phase in radio afterglows has been observed in very few gamma-ray bursts (GRBs), and in this paper, 27 radio light curves with plateau phases were acquired from the published literature. We obtain the related parameters of the radio plateau, such as temporal indexes during the plateau phase ( α 1 and α 2 ), break time ( T b,z ), and the corresponding radio flux ( F b ). The two-parameter Dainotti relation between the break time of the plateau and the corresponding break luminosity ( L b,z ) in the radio band is <?CDATA ${L}_{{\\\\rm{b}},{\\\\rm{z}}}\\\\propto {T}_{{\\\\rm{b}},{\\\\rm{z}}}^{-1.20\\\\pm 0.24}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.20</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.24</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> . Including the isotropic energy E γ ,iso and peak energy E p,i , the three-parameter correlations for the radio plateaus are written as <?CDATA ${L}_{{\\\\rm{b}},{\\\\rm{z}}}\\\\propto {T}_{{\\\\rm{b}},{\\\\rm{z}}}^{-1.01\\\\pm 0.24}{E}_{\\\\gamma ,\\\\mathrm{iso}}^{0.18\\\\pm 0.09}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.01</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.24</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>iso</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.18</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and <?CDATA ${L}_{{\\\\rm{b}},{\\\\rm{z}}}\\\\propto {T}_{{\\\\rm{b}},{\\\\rm{z}}}^{-1.18\\\\pm 0.27}{E}_{{\\\\rm{p}},{\\\\rm{i}}}^{0.05\\\\pm 0.28}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">z</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">b</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">z</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.18</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.27</mml:mn> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">p</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">i</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.05</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.28</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , respectively. The correlations are less consistent with those of the X-ray and optical plateaus, implying that radio plateaus may have a different physical mechanism. The typical frequencies crossing the observational band may be a reasonable hypothesis that causes the breaks of the radio afterglows. We calibrate the GRB empirical luminosity correlations as a standard candle for constraining cosmological parameters and find that our samples can constrain the flat ΛCDM model well but are not sensitive to the nonflat ΛCDM model. By combining GRBs with other probes, such as supernovae and the CMB, the constraints on the cosmological parameters are Ω m = 0.297 ± 0.006 for the flat ΛCDM model and Ω m = 0.283 ± 0.008, Ω Λ = 0.711 ± 0.006 for the nonflat ΛCDM model.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":\"28 4\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acfed8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfed8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
射电余辉的平台相位在少数伽玛暴(GRBs)中观测到,本文从已发表的文献中获得了27条具有平台相位的射电光曲线。我们得到了平台期的时间指标(α 1和α 2)、中断时间(tb,z)和相应的无线电通量(F b)等相关参数。平台的破裂时间与相应的无线电波段的破裂光度(lb,z)之间的双参数Dainotti关系为lb,z∝tbz,z−1.20±0.24。包括各向同性能量E γ、iso和峰值能量E p、i在内,射电高原的三参数相关性分别为lb, z∝T b, z−1.01±0.24 E γ,iso 0.18±0.09和lb, z∝T b, z−1.18±0.27 E p,i 0.05±0.28。这种相关性与x射线和光学平台的相关性不太一致,这意味着射电平台可能具有不同的物理机制。穿过观测波段的典型频率可能是导致射电余辉中断的合理假设。我们将GRB经验光度相关性校准为约束宇宙学参数的标准烛光,发现我们的样品可以很好地约束平坦ΛCDM模型,但对非平坦ΛCDM模型不敏感。将grb与其他探测器(如超新星和CMB)相结合,得到平面ΛCDM模型的宇宙学参数约束为Ω m = 0.297±0.006,非平面ΛCDM模型的宇宙学参数约束为Ω m = 0.283±0.008,Ω Λ = 0.711±0.006。
Radio Plateaus in Gamma-Ray Burst Afterglows and Their Application in Cosmology
Abstract The plateau phase in radio afterglows has been observed in very few gamma-ray bursts (GRBs), and in this paper, 27 radio light curves with plateau phases were acquired from the published literature. We obtain the related parameters of the radio plateau, such as temporal indexes during the plateau phase ( α 1 and α 2 ), break time ( T b,z ), and the corresponding radio flux ( F b ). The two-parameter Dainotti relation between the break time of the plateau and the corresponding break luminosity ( L b,z ) in the radio band is Lb,z∝Tb,z−1.20±0.24 . Including the isotropic energy E γ ,iso and peak energy E p,i , the three-parameter correlations for the radio plateaus are written as Lb,z∝Tb,z−1.01±0.24Eγ,iso0.18±0.09 and Lb,z∝Tb,z−1.18±0.27Ep,i0.05±0.28 , respectively. The correlations are less consistent with those of the X-ray and optical plateaus, implying that radio plateaus may have a different physical mechanism. The typical frequencies crossing the observational band may be a reasonable hypothesis that causes the breaks of the radio afterglows. We calibrate the GRB empirical luminosity correlations as a standard candle for constraining cosmological parameters and find that our samples can constrain the flat ΛCDM model well but are not sensitive to the nonflat ΛCDM model. By combining GRBs with other probes, such as supernovae and the CMB, the constraints on the cosmological parameters are Ω m = 0.297 ± 0.006 for the flat ΛCDM model and Ω m = 0.283 ± 0.008, Ω Λ = 0.711 ± 0.006 for the nonflat ΛCDM model.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.