Xiaoguang Liu , Mingjin Zhang , Shicheng Xiong , Xiaodong Wang , Tie Liang , Jun Li , Peng Xiong , Hongrui Wang , Xiuling Liu
{"title":"基于脑电图的运动图像分类的一维卷积多分支融合网络","authors":"Xiaoguang Liu , Mingjin Zhang , Shicheng Xiong , Xiaodong Wang , Tie Liang , Jun Li , Peng Xiong , Hongrui Wang , Xiuling Liu","doi":"10.1016/j.irbm.2023.100812","DOIUrl":null,"url":null,"abstract":"<div><p>The Brain-Computer Interface (BCI) system based on motor imagery (MI) is a hot research topic nowadays, which can control external devices through the brain and has a wide range of applications in rehabilitation, gaming, and entertainment. Due to the non-smooth, non-linear, and low signal-to-noise ratio of the MI EEG signal, it is challenging to accurately decode the MI task intention. A new end-to-end deep learning method is proposed to decode raw MI EEG signals without preprocessing, such as filtering and feature reinforcement. The 1D convolution is used to learn the time-frequency features in MI signals, and a four-branch fusion network is used as the main body to add a 1D CNN-AE block and 1D SE-block to enhance the algorithm's performance. Experiments on two publicly available datasets demonstrate that our proposed algorithm outperforms the current state-of-the-art methods. It achieves 86.11% and 89.51% on the BCI Competition IV-2a and the BCI Competition IV-2b datasets, respectively, and a 6.9% improvement in the generalizability test. The proposed data enhancement method can effectively alleviate the overfitting of the algorithm and improve the decoding performance. Further analysis shows that 1D convolution can effectively extract the features associated with the MI task.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"44 6","pages":"Article 100812"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Dimensional Convolutional Multi-branch Fusion Network for EEG-Based Motor Imagery Classification\",\"authors\":\"Xiaoguang Liu , Mingjin Zhang , Shicheng Xiong , Xiaodong Wang , Tie Liang , Jun Li , Peng Xiong , Hongrui Wang , Xiuling Liu\",\"doi\":\"10.1016/j.irbm.2023.100812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Brain-Computer Interface (BCI) system based on motor imagery (MI) is a hot research topic nowadays, which can control external devices through the brain and has a wide range of applications in rehabilitation, gaming, and entertainment. Due to the non-smooth, non-linear, and low signal-to-noise ratio of the MI EEG signal, it is challenging to accurately decode the MI task intention. A new end-to-end deep learning method is proposed to decode raw MI EEG signals without preprocessing, such as filtering and feature reinforcement. The 1D convolution is used to learn the time-frequency features in MI signals, and a four-branch fusion network is used as the main body to add a 1D CNN-AE block and 1D SE-block to enhance the algorithm's performance. Experiments on two publicly available datasets demonstrate that our proposed algorithm outperforms the current state-of-the-art methods. It achieves 86.11% and 89.51% on the BCI Competition IV-2a and the BCI Competition IV-2b datasets, respectively, and a 6.9% improvement in the generalizability test. The proposed data enhancement method can effectively alleviate the overfitting of the algorithm and improve the decoding performance. Further analysis shows that 1D convolution can effectively extract the features associated with the MI task.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"44 6\",\"pages\":\"Article 100812\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000611\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
One-Dimensional Convolutional Multi-branch Fusion Network for EEG-Based Motor Imagery Classification
The Brain-Computer Interface (BCI) system based on motor imagery (MI) is a hot research topic nowadays, which can control external devices through the brain and has a wide range of applications in rehabilitation, gaming, and entertainment. Due to the non-smooth, non-linear, and low signal-to-noise ratio of the MI EEG signal, it is challenging to accurately decode the MI task intention. A new end-to-end deep learning method is proposed to decode raw MI EEG signals without preprocessing, such as filtering and feature reinforcement. The 1D convolution is used to learn the time-frequency features in MI signals, and a four-branch fusion network is used as the main body to add a 1D CNN-AE block and 1D SE-block to enhance the algorithm's performance. Experiments on two publicly available datasets demonstrate that our proposed algorithm outperforms the current state-of-the-art methods. It achieves 86.11% and 89.51% on the BCI Competition IV-2a and the BCI Competition IV-2b datasets, respectively, and a 6.9% improvement in the generalizability test. The proposed data enhancement method can effectively alleviate the overfitting of the algorithm and improve the decoding performance. Further analysis shows that 1D convolution can effectively extract the features associated with the MI task.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…