整体传输平滑。第二部分:非线性更新

Maximilian Ramgraber , Ricardo Baptista , Dennis McLaughlin , Youssef Marzouk
{"title":"整体传输平滑。第二部分:非线性更新","authors":"Maximilian Ramgraber ,&nbsp;Ricardo Baptista ,&nbsp;Dennis McLaughlin ,&nbsp;Youssef Marzouk","doi":"10.1016/j.jcpx.2023.100133","DOIUrl":null,"url":null,"abstract":"<div><p>Smoothing is a specialized form of Bayesian inference for state-space models that characterizes the posterior distribution of a collection of states given an associated sequence of observations. Ramgraber et al. <span>[38]</span> proposes a general framework for transport-based ensemble smoothing, which includes linear Kalman-type smoothers as special cases. Here, we build on this foundation to realize and demonstrate nonlinear backward ensemble transport smoothers. We discuss parameterization and regularization of the associated transport maps, and then examine the performance of these smoothers for nonlinear and chaotic dynamical systems that exhibit non-Gaussian behavior. In these settings, our nonlinear transport smoothers yield lower estimation error than conventional linear smoothers and state-of-the-art iterative ensemble Kalman smoothers, for comparable numbers of model evaluations.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"17 ","pages":"Article 100133"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590055223000112/pdfft?md5=e441935dda3c40104c6c2b1eed55f091&pid=1-s2.0-S2590055223000112-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Ensemble transport smoothing. Part II: Nonlinear updates\",\"authors\":\"Maximilian Ramgraber ,&nbsp;Ricardo Baptista ,&nbsp;Dennis McLaughlin ,&nbsp;Youssef Marzouk\",\"doi\":\"10.1016/j.jcpx.2023.100133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Smoothing is a specialized form of Bayesian inference for state-space models that characterizes the posterior distribution of a collection of states given an associated sequence of observations. Ramgraber et al. <span>[38]</span> proposes a general framework for transport-based ensemble smoothing, which includes linear Kalman-type smoothers as special cases. Here, we build on this foundation to realize and demonstrate nonlinear backward ensemble transport smoothers. We discuss parameterization and regularization of the associated transport maps, and then examine the performance of these smoothers for nonlinear and chaotic dynamical systems that exhibit non-Gaussian behavior. In these settings, our nonlinear transport smoothers yield lower estimation error than conventional linear smoothers and state-of-the-art iterative ensemble Kalman smoothers, for comparable numbers of model evaluations.</p></div>\",\"PeriodicalId\":37045,\"journal\":{\"name\":\"Journal of Computational Physics: X\",\"volume\":\"17 \",\"pages\":\"Article 100133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590055223000112/pdfft?md5=e441935dda3c40104c6c2b1eed55f091&pid=1-s2.0-S2590055223000112-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590055223000112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055223000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

平滑是状态空间模型的贝叶斯推理的一种特殊形式,它表征了给定相关观测序列的状态集合的后验分布。Ramgraber等人(2022)提出了一个基于传输的整体平滑的一般框架,其中包括线性卡尔曼型平滑作为特殊情况。在此基础上,我们实现并演示了非线性后向系综输运平滑器。我们讨论了相关传输映射的参数化和正则化,然后研究了这些平滑器对表现出非高斯行为的非线性和混沌动力系统的性能。在这些设置中,我们的非线性传输平滑器产生的估计误差比传统的线性平滑器和最先进的迭代集合卡尔曼平滑器低,用于相当数量的模型评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ensemble transport smoothing. Part II: Nonlinear updates

Ensemble transport smoothing. Part II: Nonlinear updates

Smoothing is a specialized form of Bayesian inference for state-space models that characterizes the posterior distribution of a collection of states given an associated sequence of observations. Ramgraber et al. [38] proposes a general framework for transport-based ensemble smoothing, which includes linear Kalman-type smoothers as special cases. Here, we build on this foundation to realize and demonstrate nonlinear backward ensemble transport smoothers. We discuss parameterization and regularization of the associated transport maps, and then examine the performance of these smoothers for nonlinear and chaotic dynamical systems that exhibit non-Gaussian behavior. In these settings, our nonlinear transport smoothers yield lower estimation error than conventional linear smoothers and state-of-the-art iterative ensemble Kalman smoothers, for comparable numbers of model evaluations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信